Towards a Theory of The QCD String

or The Physics of a 750 MeV Boson

Sergei Dubousky
CCPP (NYU) \& Perimeter Institute

w Victor Gorbenko, 1511.01908 earlier work:
w Raphael Flauger, Victor Gorbenko, 1203.1054, 1205.6805,
1301.2325, 1404.0037
w Patrick Cooper, Victor Gorbenko, Ali Mohsen, Stefano Storace 1411.0703

The major underlying question:

What is $S U(\infty)$ Yang-Mills?

Old, fascinating and famously hard. Will try to convince you that it may be the right time to attack it.

QCD is a theory of strings

Bissey et al, hep-lat/o606016

Large N QCD is a theory of free strings

Can we solve this free string theory?

SETUP

\checkmark Confining gauge theory with a gap Λ \checkmark Unbroken center symmetry

SETUP

\checkmark Confining gauge theory with a gap
\checkmark Unbroken center symmetry
\checkmark Large N

4D theory

Looks hopeless to solve without experimental data

(Long) String as seen by an Effective Field Theorist

Theory of Goldstone Bosons

$$
I S O(1, D-1) \rightarrow I S O(1,1) \times S O(D-2)
$$

$$
\mathcal{\delta}_{\epsilon}^{\alpha i} X^{j}=-\epsilon\left(\delta^{i j} \sigma^{\alpha}+X^{i} \partial^{\alpha} X^{j}\right)
$$

Embedding Coordinates
Induced Metric

$$
\begin{aligned}
& x^{\mu}=\left(\sigma^{\alpha}, \ell_{s} X^{i}(\sigma)\right) \quad h_{\alpha \beta}=\partial_{\alpha} x^{\mu} \partial_{\beta} x_{\mu} \\
& S_{\text {string }}=-\ell_{s}^{-2} \int d^{2} \sigma \sqrt{h}+\quad \text { Nambu-Goto } \\
& \int d^{2} \sigma \sqrt{h}\left(\frac{1}{\alpha_{0}}\left(K_{\alpha \beta}^{i}\right)^{2}+\chi R\right)+ \\
& \text { rigidity Euler characteristic } \\
& \text { (vanishes on-shell) }
\end{aligned}
$$

Embedding Coordinates

$$
\begin{aligned}
& x^{\mu}=\left(\sigma^{\alpha}, \ell_{s} X^{i}(\sigma)\right) \quad h_{\alpha \beta}=\partial_{\alpha} x^{\mu} \partial_{\beta} x_{\mu} \\
& S_{\text {string }}=-\ell_{s}^{-2} \int d^{2} \sigma \sqrt{h}+\quad \text { Nambu-Goto } \\
& \underbrace{\int d^{2} \sigma \sqrt{h}\left(K_{\alpha_{0}}^{i}\left(K_{i}^{i}\right)^{2}+\chi R\right)+}_{\substack{\text { rigidity } \\
\text { (vanishes on-shell) }}} \\
& C_{1} \ell_{s}^{2} \int d^{2} \sigma \sqrt{h}\left(K_{\alpha \beta}^{i}\right)^{4}+\cdots=C_{1} \ell_{s}^{6} \int d^{2} \sigma\left(\partial_{\alpha} \partial_{\beta} X^{i}\right)^{4}+\ldots
\end{aligned}
$$

higher order non-universal terms start at ℓ_{s}^{6}

Explains the ground state data

$$
E_{0}(R)=\frac{R}{\ell_{s}^{2}}-\frac{(D-2) \pi}{6 R}-\frac{(D-2)^{2} \pi^{2} \ell_{s}^{2}}{72 R^{3}}-\frac{(D-2)^{3} \pi^{3} \ell_{s}^{4}}{432 R^{5}}+\text { non-universal terms }
$$ classical

Explains the ground state data

$$
E_{0}(R)=\frac{R}{\ell_{s}^{2}}-\frac{(D-2) \pi}{6 R}-\frac{(D-2)^{2} \pi^{2} \ell_{s}^{2}}{72 R^{3}}-\frac{(D-2)^{3} \pi^{3} \ell_{s}^{4}}{432 R^{5}}+\text { non-universal terms }
$$

classical

sounds as a bad news: very hard to extract non-trivial information

Excited states are more promising

Left-movers only:

Solid --- universal terms in ℓ_{s} / R expansion
Dashed --- light cone quantized bosonic string

Excited states are more promising

Colliding left- and right-movers:

Solid --- universal terms in ℓ_{s} / R expansion
Dashed --- light cone quantized bosonic string

Goddard,Goldstone,Rebbi,Thorn'73

Light Cone (GGRT) spectrum:

$$
E_{L C}(N, \tilde{N})=\sqrt{\frac{4 \pi^{2}(N-\tilde{N})^{2}}{R^{2}}+\frac{R^{2}}{\ell_{s}^{4}}+\frac{4 \pi}{\ell_{s}^{2}}\left(N+\tilde{N}-\frac{D-2}{12}\right)}
$$

ℓ_{s} / R expansion breaks down for excited states

because 2π is a large number!

Light Cone (GGRT) spectrum:

$$
E_{L C}(N, \tilde{N})=\sqrt{\frac{4 \pi^{2}(N-\tilde{N})^{2}}{R^{2}}+\frac{R^{2}}{\ell_{s}^{4}}+\frac{4 \pi}{\ell_{s}^{2}}\left(N+\tilde{N}-\frac{D-2}{12}\right)}
$$

ℓ_{s} / R expansion breaks down for excited states because 2π is a large number!
for excited states:

$$
E=\ell_{s}^{-1} \mathcal{E}\left(p_{i} \ell_{s}, \ell_{s} / R\right)
$$

Let's try to disentangle these two expansions

Finite volume spectrum in two steps:

1) Find infinite volume S-matrix
2) Extract finite volume spectrum from the S-matrix
3) is a standard perturbative expansion in $p \ell_{s}$
4) perturbatively in massive theories (Lüscher) exactly in integrable 2d theories through TBA

Relativistic string is neither massive nor integrable But approaches integrable GGRT theory at low energies.

Thermodynamic Bethe Ansatz

Zamolodchikov'91
Dorey, Tateo '96

$$
\begin{gathered}
\hat{p}_{k L}^{(i)} R+\sum_{j, m} 2 \delta\left(\hat{p}_{k L}^{(i)}, \hat{p}_{m R}^{(j)}\right) N_{m R}^{(j)}-i \sum_{j=1}^{D-2} \int_{0}^{\infty} \frac{d p^{\prime}}{2 \pi} \frac{d 2 \delta\left(i \hat{p}_{k L}^{(i)}, p^{\prime}\right)}{d p^{\prime}} \ln \left(1-e^{-R \epsilon_{R}^{j}\left(p^{\prime}\right)}\right)=2 \pi n_{k L}^{(i)} \\
\epsilon_{L}^{i}(p)=p+\frac{i}{R} \sum_{j, k} 2 \delta\left(p,-i \hat{p}_{k R}^{(j)}\right) N_{k R}^{(j)}+\frac{1}{2 \pi R} \sum_{j=1}^{D-2} \int_{0}^{\infty} d p^{\prime} \frac{d 2 \delta\left(p, p^{\prime}\right)}{d p^{\prime}} \ln \left(1-e^{-R \epsilon_{R}^{j}\left(p^{\prime}\right)}\right) \\
E(R)=R+\sum_{j, k} p_{k L}^{(j)}+\sum_{j=1}^{D-2} \int_{0}^{\infty} \frac{d p^{\prime}}{2 \pi} \ln \left(1-e^{-R \epsilon_{L}^{j}\left(p^{\prime}\right)}\right) \\
+ \text { right-movers }
\end{gathered}
$$

The leading order phase shift reproduces all of the GGRT spectrum

Thermodynamic Bethe Ansatz

Zamolodchikov'91
Dorey, Tateo '96

The leading order phase shift reproduces all of the GGRT spectrum

Improve your appearance with TBA:

Colliding left- and right-movers

Colliding left- and right-movers

Red points:
A new massive state appearing as a resonance in the antisymmetric channel!

$$
S=\int d^{2} \sigma \frac{1}{2} \partial_{\alpha} \phi \partial^{\alpha} \phi-\frac{1}{2} m^{2} \phi^{2}+Q \phi \epsilon^{\alpha \beta} \epsilon_{i j} K_{\alpha \gamma}^{i} K_{\beta}^{j \gamma}
$$

$m \ell_{s} \approx 1.85_{-0.03}^{+0.02}$
$Q \approx 0.382 \pm 0.004$

SD, Flauger, Gorbenko, 1301.2325

Alternative and Equivalent View on TBA:

Use finite volume spectrum to reconstruct S-matrix

Alternative and Equivalent View on TBA:

Use finite volume spectrum to reconstruct S-matrix GGRT spectrum

$$
E_{L C}(N, \tilde{N})=\sqrt{\frac{4 \pi^{2}(N-\tilde{N})^{2}}{R^{2}}+\frac{R^{2}}{\ell_{s}^{4}}+\frac{4 \pi}{\ell_{s}^{2}}\left(N+\tilde{N}-\frac{D-2}{12}\right)}
$$

corresponds to an integrable theory with

$$
e^{2 i \delta(s)}=e^{i s \ell^{2} / 4}
$$

*Time delay proportional to the collision energy *Scale survives all the way to the UV!

Could QCD string be integrable for pure glue?

$$
S_{\text {string }}=-\ell_{s}^{-2} \int d^{2} \sigma \sqrt{-\operatorname{det}\left(\eta_{\alpha \beta}+\partial_{\alpha} X^{i} \partial_{\beta} X^{i}\right)}+\mathcal{O}\left(\ell_{s}^{2}\right)
$$

*Integrable at tree level
*Universal one-loop particle production if $D \neq 26.3$
All these one-loop amplitudes can be explicitly calculated

A simple option to restore integrability:

$$
S_{s t r i n g}=-\ell_{s}^{-2} \int d^{2} \sigma \sqrt{-\operatorname{det}\left(\eta_{\alpha \beta}+\partial_{\alpha} X^{i} \partial_{\beta} X^{i}+\partial_{\alpha} \phi \partial_{\beta} \phi\right)}+Q \int d^{2} \sigma \phi R[X]+\ldots
$$

$$
Q=\sqrt{\frac{25-D}{48 \pi}}
$$

$$
e^{2 i \delta(s)}=e^{i s \ell^{2} / 4}
$$

This is also known as a linear dilaton background

Another simple option to restore integrability:

$$
S_{\text {string }}=-\ell_{s}^{-2} \int d^{2} \sigma \sqrt{-\operatorname{det}\left(\eta_{\alpha \beta}+\partial_{\alpha} X^{i} \partial_{\beta} X^{i}+\partial_{\alpha} \phi \partial_{\beta} \phi\right)}+Q \int d^{2} \sigma \phi K \tilde{K}+\ldots
$$

SD, Gorbenko, 1511.01908

$$
\begin{gathered}
Q=\sqrt{\frac{25-D}{48 \pi}}=\sqrt{\frac{7}{16 \pi}} \approx 0.373176 \ldots \\
e^{2 i \delta(s)}=e^{i s \ell^{2} / 4}
\end{gathered}
$$

Compare to
$Q_{\text {lattice }} \approx 0.382 \pm 0.004$
???

What this could mean?

*Numerology
*In the planar limit axion becomes massless and the planar QCD string is integrable

* This is the UV asymptotics of the planar QCD string

Athenodorou, Teper, to appear

To conclude:

(Strawman) proposal for the structure of the $Q C D$ string in $D=3,4$:

*Matter content:
Goldstones+massive antisymmetric O(D-2) tensor
*Integrable UV asymptotics with

$$
e^{2 i \delta(s)}=e^{i s \ell^{2} / 4}
$$

*Future checks: confront with lattice data for winding strings and glueball spectra

