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The major underlying question:

 What is               Yang-Mills? SU(1)

Old, fascinating and famously  hard. Will try to 
convince you that it may be the right time to 

attack it.
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FIG. 10: Isosurface and surface plot of C(y⃗) for a 10-sweep
smeared T-shape source with quark positions as in the seventh
configuration of Table I. The maximum expulsion is 8.3% and
the isosurface is set to 4.4%. Further details are described in
the caption of Fig. 6.

FIG. 11: Isosurface and surface plot of C(y⃗) for a 10-sweep
smeared Y-shape source with quark positions as in the seventh
configuration of Table I. The maximum expulsion is 8.3% and
the isosurface is set to 4.4%. Further details are described in
the caption of Fig. 6.

FIG. 12: Isosurface and surface plot of C(y⃗) for a 10-sweep
smeared L-shape source with quark separations of ℓ = 10.
The maximum expulsion is 8.8% and the isosurface is set to
4.4%. Further details are described in the caption of Fig. 6.

tive three-quark potential for the various quark positions,
source shapes and Euclidean time evolutions. The vac-
uum expectation value for W3Q is

⟨W3Q(τ)⟩ =
∞
∑

n=0

Cn exp(−a Vn τ), (4)

where Vn is the potential energy of the n-th excited state
and Cn describes the overlap of the source with the n-
th state. The effective potential is extracted from the
Wilson loop via the standard ratio

a V (r⃗, τ) = ln

(

W3Q(r⃗, τ)

W3Q(r⃗, τ + 1)

)

. (5)

If the ground state is indeed dominant, plotting V as a
function of τ will show a plateau and any curvature can
be associated with excited state contributions. Statistical
uncertainties are estimated via the jackknife method [16].

Our results for the various quark positions and source
shapes are shown in Fig. 16. All small shapes are stable
against noise over a long period of time evolution and
even some of the largest shapes show some stability be-
fore being lost into the noise.

Robust plateaus are revealed for the first four quark
positions of Table I for the T and Y shape sources. This
suggests the ground state has been isolated and indeed
the four lowest effective potentials of the T- and Y-shape
sources agree. This result was foreseen in the qualita-
tive analysis where Figs. 6 and 7 for the T- and Y-shape
sources respectively displayed the same correlations be-
tween the action density and the quark positions.

Conversely, the disagreement between Figs. 10 and 11
indicates the ground state has not been isolated in one
or possibly both cases. Indeed the nontrivial slopes of
the seventh effective potentials of Fig. 16 for the Y- and
T-shape sources confirm this. On the other hand, the
curves are sufficiently flat to estimate an effective poten-
tial at small values of τ , and given knowledge of the node
position from our qualitative analysis, one can make con-
tact with models for the effective potential.

The expected r⃗ dependence of the baryonic potential
is [2, 4]

V3Q =
3

2
V0 −

1

2

∑

j<k

g2CF

4πrjk
+ σL , (6)

where CF = 4/3, σ is the string tension of the qq̄ poten-
tial and L is a length linking the quarks. There are two
models which predominate the discussion of L; namely
the ∆ and Y ansätze.

In the ∆-ansatz, the potential is expressed by a sum
of two body potentials [4]. In this case L = L∆/2 =
3⟨dqq⟩/2 where L∆ is the sum of the inter-quark dis-
tances. In the Y-ansatz [2, 6], L = LY = 3⟨rs⟩ is the
sum of the distances of the quarks to the Fermat point.

Bissey et al, hep-lat/0606016 

QCD is a theory of strings

Can we solve this free string theory?

Large N QCD is a theory of free strings
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Looks hopeless to solve without experimental data



ISO(1, D � 1) ! ISO(1, 1)⇥ SO(D � 2)

Theory of Goldstone Bosons

These Xµ’s are the coordinates of the embedding of the string worldsheet into the target
space. Hence their transformation rules under the full Poincaré group ISO(D � 1, 1) are
simply those of the space-time coordinates. These are analogues of the sigma model U field
in the chiral pion Lagrangian. The Lorentz invariant Lagrangian is then simply a sum of
local geometric invariants constructed with the help of the embedding Xµ,

Sstring = �
Z

d2�
p� deth↵�

✓
`�2
s +

1

↵0

�
Ki

↵�

�2
+ . . .

◆
(4)

where h↵� is the induced metric on the world-sheet,

h↵� = @↵X
µ@�Xµ (5)

Ki
↵� is the second fundamental form (the extrinsic curvature) of the world-sheet. The first

term in (4) is the Nambu–Goto (NG) action, the second one is the rigidity term introduced
by Polyakov [8] and Kleinert [9], and dots stand for higher derivative geometric invariants.2

The tension of the string `�2
s , the rigidity parameter ↵0, and the coe�cients in front of all

other higher-derivative operators are free parameters of the low energy e↵ective theory to be
determined either from experiment (or from the lattice data for the QCD string), or from
matching the e↵ective theory to the microscopic theory in the UV (which can be done, for
example, for cosmic strings in weakly coupled models).

Much of our discussion will deal with infinitely long strings because we are concerned
with the form of the bulk action. IR e↵ects such as finite size e↵ects and boundary terms
can be included at a later stage.

As expected, the action (4) is invariant under the linearly realized ISO(1, 1)⇥SO(D�2)
symmetry, which is the unbroken subgroup of ISO(D�1, 1) in the presence of a long straight
string. The ISO(1, 1) factor acts as a worldsheet Poincaré group, and SO(D� 2) acts as in
(2). The remaining spatial translations act as in (1), and the action of the remaining broken
boosts and rotations J↵i following from the linear transformation law for Xµ is

�↵i✏ Xj = �✏(�ij�↵ +X i@↵Xj) , (6)

where ✏ is an infinitesimal parameter of the boost/rotation.
Often as a starting point for formulating the string dynamics one chooses the manifestly

covariant formalism, where all components of Xµ are considered as independent dynamical
fields. Then the action (4) is invariant under an additional gauge symmetry, world sheet
reparametrizations, and the formulation presented here arises as a result of gauge fixing
defined by (3). The transformation rule (6) in this language arises as a combination of a
conventional linearly realized boost/rotation on the components of Xµ, and a compensating
gauge transformation restoring the gauge condition (3). We deliberately chose a somewhat
less elegant formulation, to stress the analogy with the more familiar case of Goldstones for

2Naively, at this order there are two additional operators, (Ki↵
↵)

2 and R. In two dimensions R is a total
derivative and the three operators are related by the Gauss-Codazzi equation so that in two dimensions only
one of the extrinsic curvature squares has to be kept.

2

(Long) String as seen by an Effective Field Theorist
Lüscher ’81 

Lüscher, Weisz ’04 
Aharony et al ’07-11 

SD,Flauger, Gorbenko’12
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Explains the ground state data
E0(R) =

R
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Lüscher term

Figure 4: Sample connected diagrams contributing to the R�5 order corrections to the energy
levels.

this order. With Weyl symmetric ordering one has to include the contribution from the
non-covariant counterterm (14) with the value of c4 as given by (16).

An attempt to perform this calculation was made recently in [10], using the Weyl sym-
metric ordering. It was assumed that all the diagrams without the c4 term add up into
the light cone spectrum (17) expanded up to this order. So rather than including all the
diagrams above, only the contribution of the c4 term was calculated. It turns out that the
c4 term contributes only to the tree level shift of two-particle states. It was conjectured
that the correct value of c4 is (D� 26)/192⇡, and this tree-level result was suggested as the
leading correction to the light cone spectrum.

As we saw the correct value of c4 is given by (16), and we see no reason for the diagrams
with c4 = 0 to reproduce the light cone spectrum10, so that this calculation is incomplete.

However, here comes the puzzle. Recently the calculation at the 1/R5 order was per-
formed in the PS gauge [27] and yielded the same result as the one obtained in [10]. We
should note in passing that the practical advantage of the PS gauge is that at this order one
has to work with a free theory with a single interaction term. The price to pay is that one
has to impose the BRST constraints to restrict to the correct physical states. The puzzle is
why the calculation in the PS gauge agrees with the incomplete one using the wrong value
of c4.

The explanation is as follows. Rather than doing the full brute force calculation in static
gauge one can make use of the known light cone spectrum. This is the exact spectrum of
some relativistic integrable two-dimensional theory. At this order in the derivative expansion
its Lagrangian takes the form

LLC = LNG +
D � 26

192⇡
@↵@�X

i@↵@�X i@�X
j@�Xj . (50)

Here LNG is the full renormalized NG action at this order in derivative expansion. For
example, in dimensional regularization LNG includes the evanescent term (15), with Weyl
symmetric ordering LNG includes the non-covariant c4-term with the correct value (16) of c4.
The additional term in (50) cancels the PS annihilation amplitude and breaks non-linearly

10In fact, as will become clear momentarily they do not reproduce the light cone spectrum.
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Excited states are more promising
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Excited states are more promising
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Light Cone (GGRT) spectrum:

However, the emphasis is usually made on non-critical theories with non-zero string coupling
constant. To the best of our knowledge the exact S-matrix (1) of a “free” critical string has
not been discussed before, and we feel that the viewpoint advocated here may be useful. We
present further speculations and future directions in the concluding section 7.

2. Exact S-Matrix of the Critical Nambu–Goto

For our purposes it will be instructive to consider the worldsheet theory from an e↵ective
field theory point of view. A detailed introduction to this approach can be found in the
accompanying paper [18]. From this point of view the world-sheet theory of an infinitely long
string in a D-dimensional Minkowski space is a theory of Goldstone bosons corresponding
to the coset ISO(D� 1, 1)/ISO(1, 1)⇥ SO(D� 2). Here ISO(D� 1, 1) is the non-linearly
realized target space Poincaré symmetry. Its linearly realized subgroup is a direct product
of the worldsheet Poincaré symmetry ISO(1, 1) and of the SO(D � 2) group of transverse
rotations. This is a consistent e↵ective field theory in any number of dimensions with a
cuto↵ scale set by the string length `s, which physically corresponds to the string width. The
e↵ective action starts with the Nambu–Goto term and in principle has an infinite number of
higher derivative corrections, corresponding to higher order geometric invariants.

Somewhat miraculously, the Nambu–Goto theory is expected, at least in a certain sense,
to be renormalizable in the critical number of dimensions D = 26 [19]. An e↵ective field
theorist would discover this by calculating loops and finding that divergences, which were
expected on the basis of the naive power counting, cancel. We will discuss some aspects of
these expected cancellations in section 4. We will argue that the story is somewhat subtle.
In particular, the cancellations occur only for on-shell quantities. This makes it challenging
to see the cancellations by a direct calculation because at low orders in perturbation theory
on-shell divergences cancel because of symmetry. To see non-trivial cancellations one thus
has to go rather far in the loop expansion.

For now we take a shortcut, and do not check the cancellations by brute force calculation.
Instead, we deduce the properties of the resulting finite on-shell amplitudes from the known
spectrum of the theory at finite volume. This is known for instance from the quantization in
light-cone gauge (which is consistent with the non-linearly realized ISO(D� 1, 1) symmetry
at D = 26). After compactification on a circle (see, e.g., [20]),

ELC(N, Ñ) =

s
4⇡2(N � Ñ)2

R2
+

R2

`4s
+

4⇡

`2s

✓
N + Ñ � D � 2

12

◆
. (4)

Here R is the length of the string, N and Ñ are levels of an excited string state, so that
2⇡(N � Ñ)/R is the total Kaluza–Klein momentum of the state.

To avoid confusion, let us clarify the meaning of the subscript LC. It indicates that we
use light-cone quantization to define the theory at the quantum level. However, equation (4)
corresponds to target space energies obtained in light-cone quantization and should not be
confused with the spectrum of the light-cone Hamiltonian. Classically, the target space

5

          expansion breaks down for excited states  
because          is a large number! 
`s/R

2⇡

Goddard,Goldstone,Rebbi,Thorn’73 
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          expansion breaks down for excited states  
because          is a large number! 
`s/R

2⇡

E = `�1
s E(pi`s, `s/R)

for excited states:

Let’s try to disentangle these two expansions

Goddard,Goldstone,Rebbi,Thorn’73 



Finite volume spectrum in two steps:

1) Find infinite volume S-matrix 

2) Extract finite volume spectrum from the S-matrix 

1) is a standard perturbative expansion in          

2) perturbatively in massive theories (Lüscher) 

exactly in integrable 2d theories through TBA

p`s

Relativistic string is neither massive nor integrable 
But approaches integrable GGRT theory at low energies.



Thermodynamic Bethe Ansatz
Dorey, Tateo ’96
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Zamolodchikov’91

The leading order phase shift reproduces all of the 
GGRT spectrum



Thermodynamic Bethe Ansatz
Dorey, Tateo ’96

Asymptotic Bethe Ansatz    
(~Lüscher's formula)
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finite size corrections

Zamolodchikov’91

The leading order phase shift reproduces all of the 
GGRT spectrum



Improve your appearance with TBA:
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Colliding  left- and right-movers
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Colliding  left- and right-movers

Red points:
A new massive state appearing as a resonance in the

antisymmetric channel!
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SD, Flauger, Gorbenko, 1301.2325

~750 MeV



Alternative and Equivalent View on TBA:
Use finite volume spectrum to reconstruct  S-matrix



Alternative and Equivalent View on TBA:
Use finite volume spectrum to reconstruct  S-matrix

GGRT spectrum

However, the emphasis is usually made on non-critical theories with non-zero string coupling
constant. To the best of our knowledge the exact S-matrix (1) of a “free” critical string has
not been discussed before, and we feel that the viewpoint advocated here may be useful. We
present further speculations and future directions in the concluding section 7.

2. Exact S-Matrix of the Critical Nambu–Goto

For our purposes it will be instructive to consider the worldsheet theory from an e↵ective
field theory point of view. A detailed introduction to this approach can be found in the
accompanying paper [18]. From this point of view the world-sheet theory of an infinitely long
string in a D-dimensional Minkowski space is a theory of Goldstone bosons corresponding
to the coset ISO(D� 1, 1)/ISO(1, 1)⇥ SO(D� 2). Here ISO(D� 1, 1) is the non-linearly
realized target space Poincaré symmetry. Its linearly realized subgroup is a direct product
of the worldsheet Poincaré symmetry ISO(1, 1) and of the SO(D � 2) group of transverse
rotations. This is a consistent e↵ective field theory in any number of dimensions with a
cuto↵ scale set by the string length `s, which physically corresponds to the string width. The
e↵ective action starts with the Nambu–Goto term and in principle has an infinite number of
higher derivative corrections, corresponding to higher order geometric invariants.

Somewhat miraculously, the Nambu–Goto theory is expected, at least in a certain sense,
to be renormalizable in the critical number of dimensions D = 26 [19]. An e↵ective field
theorist would discover this by calculating loops and finding that divergences, which were
expected on the basis of the naive power counting, cancel. We will discuss some aspects of
these expected cancellations in section 4. We will argue that the story is somewhat subtle.
In particular, the cancellations occur only for on-shell quantities. This makes it challenging
to see the cancellations by a direct calculation because at low orders in perturbation theory
on-shell divergences cancel because of symmetry. To see non-trivial cancellations one thus
has to go rather far in the loop expansion.

For now we take a shortcut, and do not check the cancellations by brute force calculation.
Instead, we deduce the properties of the resulting finite on-shell amplitudes from the known
spectrum of the theory at finite volume. This is known for instance from the quantization in
light-cone gauge (which is consistent with the non-linearly realized ISO(D� 1, 1) symmetry
at D = 26). After compactification on a circle (see, e.g., [20]),

ELC(N, Ñ) =

s
4⇡2(N � Ñ)2

R2
+

R2

`4s
+

4⇡

`2s

✓
N + Ñ � D � 2

12

◆
. (4)

Here R is the length of the string, N and Ñ are levels of an excited string state, so that
2⇡(N � Ñ)/R is the total Kaluza–Klein momentum of the state.

To avoid confusion, let us clarify the meaning of the subscript LC. It indicates that we
use light-cone quantization to define the theory at the quantum level. However, equation (4)
corresponds to target space energies obtained in light-cone quantization and should not be
confused with the spectrum of the light-cone Hamiltonian. Classically, the target space

5

corresponds to an integrable theory with 

e2i�(s) = eis`
2/4

✴Time delay proportional to the collision energy 
✴Scale survives all the way to the UV !



Could QCD string be integrable for pure glue?           

NO

✴Integrable at tree level 

✴Universal one-loop particle production if D 6= 26, 3

Sstring = �`�2
s

Z
d2�

q
�det(⌘↵� + @↵Xi@�Xi) +O(`2s)

All these one-loop amplitudes can be explicitly calculated 



A simple option to restore integrability:

Sstring = �`�2
s

Z
d2�

q
�det(⌘↵� + @↵Xi@�Xi + @↵�@��) +Q

Z
d2��R[X] + . . .

Q =

r
25�D

48⇡

This is also known as a linear dilaton background

e2i�(s) = eis`
2/4



Another simple option to restore integrability:

Sstring = �`�2
s

Z
d2�

q
�det(⌘↵� + @↵Xi@�Xi + @↵�@��) +Q

Z
d2��KK̃ + . . .

Q =

r
25�D

48⇡
=

r
7

16⇡
⇡ 0.373176 . . .

Compare to
Qlattice ⇡ 0.382± 0.004

???

SD, Gorbenko,  1511.01908 

e2i�(s) = eis`
2/4



What this could mean? 

✴Numerology 

✴In the planar limit axion becomes massless and the 
planar QCD string is integrable   

✴ This is the UV asymptotics of the planar QCD string
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Figure 2: The volume dependence of the {J = 0, PP = +, PR = +, q = 0} (blue) and {J = 0, PP =
−, PR = −, q = 0} (red) ground states. The bands correspond to the energy levels obtained with the
largest volume setup of 8× 24× 24× 32× a4.
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Figure 3: The ground state energy with quantum numbers {J = 0, PP = −, PR = −, q = 0} as a
function of 1/N2 and a linear extrapolation to N = ∞.

2

Athenodorou, Teper, to appear

the second option is excluded



To conclude:

(Strawman) proposal for the structure 
of the QCD string in D=3,4:

✴Matter content:                                                                 
Goldstones+massive antisymmetric O(D-2) tensor   

✴Integrable UV asymptotics with 

e2i�(s) = eis`
2/4

✴Future checks: confront with lattice data for winding 
strings and glueball spectra


