The Dark Side of the Propagators

Analytical approach to QCD
in the infrared of Minkowski space

Fabio Siringo

Department of Physics and Astronomy
University of Catania, Italy

LATTICE 2016 - Southampton, 25-30 July 2016

Fabio Siringo



Overview: the whole talk in a slide

Fabio Siringo



Overview: the whole talk in a slide

@ The Dream:

Fabio Siringo



Overview: the whole talk in a slide

@ The Dream:
Do all the work analytically and forget about Lattice People!

Fabio Siringo



Overview: the whole talk in a slide

@ The Dream:
Do all the work analytically and forget about Lattice People!

Change the expansion point — Massive Expansion
also known as Optimized Perturbation Theory (OPT) and
evaluate everything from first principles

Fabio Siringo



Overview: the whole talk in a slide

@ The Dream:
Do all the work analytically and forget about Lattice People!

Change the expansion point — Massive Expansion
also known as Optimized Perturbation Theory (OPT) and
evaluate everything from first principles

@ Reality:
Not self-consistent yet — Optimization by Lattice

Fabio Siringo
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@ The Dream:
Do all the work analytically and forget about Lattice People!

Change the expansion point — Massive Expansion
also known as Optimized Perturbation Theory (OPT) and
evaluate everything from first principles

@ Reality:
Not self-consistent yet — Optimization by Lattice
but

we can analytically continue to Minkowski space!
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(Tissier+Wschebor,2010,2011 - Landau Gauge)

@ OPT is an old story: (Lo + dLy) + (Ling — 0L1m)

@ [Massive propagator] + [mass counterterm §T' = m?]

Nice features:
@ The mass kills itself at tree-level:

Yiee = —x— =0 =m> = (—p2+m2)—§]:—p2

@ Mass divergences cancel in loops:

—O— + —— = IRfinite

@ The original Lagrangian is not modified
@ Standard UV behavior
@ From first principles ®
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Do mass divergences cancel at any order?

A simple argument:

@ Mass divergences arise from the massive propagator
@ No mass divergences in the exact (scaleless) theory
@ The Lagrangian is not modified

The counterterms 6T = m? must cancel the divergences.
How many do we need?

O = 5
1 1 , 1
2t m? = _p2+m2m 2 m?
The integral is less divergent at each insertion.

A finite number of insertions makes any loop integral
convergent: divergences must cancel at a finite order &
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One-Loop third-order double expansion

(Landau Gauge)

Yang-Mills — F.S., Nucl. Phys. B 907 572 (2016)
QCD — ES., arXiv:1607.02040

Sgn = SR N

m+%+@%ﬁ+§§+w::m+
Q- oo Cm -
S -

2q = % + @@% +

+
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UNIVERSAL SCALING

Ignoring RG effects, a ~ Na

2(p) = axW(p) +?2P (p,N) + - (M
(1
20) R O G =S @)
B 4 _J(p)
AP =TS T ©

Setting Z=z(14+«dZ) (one-loop):
zJ(p)_1 =14+« [F(pz/mz) - 5Z] + O(az) (4)

2J(p) =1+ a[F(p*/m*) — F(?/m*)] + O(a®)  (5)
Must exist x, y, z:

2J(p/x)"" +y=F(p*/m*) + Fo + O() ©® @
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UNIVERSAL SCALING
GLUON INVERSE DRESSING FUNCTION
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UNIVERSAL SCALING
GHOST INVERSE DRESSING FUNCTION

Denoting by G(s) the ghost universal function (F(s) — G(s))
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UNIVERSAL SCALING

GHOST INVERSE DRESSING FUNCTION
The ghost universal function is just
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UNIVERSAL SCALING

GHOST INVERSE DRESSING FUNCTION
The ghost universal function is just

G(s) = % 2+ % — 2slogs + %2(1 +5)%(2s — 1) log (1 +5)]
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TABLE of OPTIMIZED RENORMALIZATION

CONSTANTS: zJ(p/x)"' +y=F(p*/m*) + F,

arXiv:1607.02040

/ /

Data set N Ny x y z y z
Bogolubsky etal. 3 0 1 0 3.33 0 1.57
Duarte et al. 3 0 1.1 -0.146 2.65 0.097 1.08
Cucchieri-Mendes 2 0 0.858 -0.254 1.69 0.196 1.09
Ayala et al. 3 0 0.933 - - 0.045 1.17
Ayala et al. 3 2 1.04 - - 0.045 1.28
Ayala et al. 3 4 1.04 - - 0.045 1.28

Table: Scaling constants x, y, z (gluon) and y’, z’ (ghost). The

constant shifts Fy = —1.05, Gy = 0.24 and the mass m = 0.73 GeV are
optimized by requiring that x = 1 and y = y’ = 0 for the lattice data of
Bogolubsky et al. (2009) @
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Running Coupling
Pure Yang-Mills SU(3)

RG invariant product (Landau Gauge — MOM-Taylor scheme):

2 .
() = as(uo)% What if 6Fy = 6Gy = £25% ?
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Running Coupling
Pure Yang-Mills SU(3)

RG invariant product (Landau Gauge — MOM-Taylor scheme):

2 .
() = as(uo)% What if 6Fy = 6Gy = £25% ?
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o = 0.67 GeV, ay = 1.21, data of Bogolubsky et al.(2009). i
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FAQ |

SILLY POINTS MADE BY THE REFEREES
(more serious list at the end)

@ Does the photon acquire a mass by the same method?

@ How can you get anything new by adding "zero" to the
Lagrangian ? (without inserting any physical ansatz or any
model for NP physics)

@ The method must be wrong otherwise it would also explain
Chiral Symmetry Breaking

@ The method must be wrong otherwise the propagator
could be analytically continued to Minkowski space where
the gluon would get a physical dynamical pole
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ANALYTIC CONTINUATION

arXiv:1605.07357

GLUON PROPAGATOR - SU(3)
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ANALYTIC CONTINUATION

arXiv:1605.07357

GLUON PROPAGATAOR - SU(3)
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GENERALIZED SPECTRAL FUNCTION
HOW TO DEFINE A SPECTRAL FUNCTION WITH COMPLEX POLES ?

If G(p) has complex poles then
G(p*) = G*(p*) + 6G(p?)

where the rational function GX just contains the poles

G*(z) = R + il
7—a—iff z—a+if

and the finite part 6G satisfies usual dispersion relations

Re<5(;(p2)zpv/+oo P g,
0

1
plw) = —lIm 0G(w + ie) = —— Im G(w + ie)
7T s

G®(p?) cannot be reconstructed from Im G

o
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ANALYTIC CONTINUATION

Dispersion relations with complex poles — arXiv:1606.03769
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BACK TO EUCLIDEAN SPACE

R R* pr+ (a+18)

GR(z) = — + — =
@) z—a—if  z—a+if P+ 2apt + (o + 3?)
where r = (ImR)/(Re R) = tan[arg(R)] RGZ model!
1k | Lanice | .
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Re 3G=Re G - G}
= 06
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& 04 r
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O L
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ANALYTIC CONTINUA'!'ION

Ghost dressing function: G(p*) = %
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ANALYTIC CONTINUATION

Ghost dressing function: G(p?) = \;‘{)

-Zg | mX(p)
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CHIRAL QCD
Gluon sector

Optimized by the Lattice Ny =2, m =0.8 GeV M =7

REAL PART IMAGINARY PART
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25 056 —— 1 05 06
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Lattice data are for two light quarks, from Ayala et al. (2012)

What about poles ?
2 pairs of compex conjugated poles &
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CHIRAL QCD
Gluon sector

Optimized by the Lattice:

m = 0.8 GeV, M = 0.65 GeV
m? = (0.54 +£0.52i) GeV?, m} = (1.69 +0.1i) GeV?
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CHIRAL QCD
Quark sector

500,

zq:_x_+_¢%_+_@_+ixj_

@ The counterterm 6" = —M cancels the mass at tree-level

@ A massive propagator from loops — S(p) = 7 _Zﬁ(f()p)

@ A new parameter x = M/m
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CHIRAL QCD
Quark sector

500,

zq:_x_+ﬂ_+_@_+ixj_

@ The counterterm 6" = —M cancels the mass at tree-level

@ A massive propagator from loops — S(p) = 7 _Zﬁ(f()p)

@ A new parameter x = M/m
but

@ Agreement not as good as for pure YM theory
(Z(p) is decreasing)

@ M(p) depends on aj
@ Optimization is not easy without RG corrections!
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CHIRAL QCD

Quark sector — Ny = 2
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CHIRAL QCD

Quark sector — Ny = 2
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CHIRAL QCD

Quark sector — Ny = 2
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CHIRAL QCD

Quark sector — Ny = 2
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CHIRAL QCD

Quark sector: ANALYTIC CONTINUATION TO MINKOWSKY SPACE

Quark propagator:
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CHIRAL QCD

Quark sector: ANALYTIC CONTINUATION TO MINKOWSKY SPACE

Quark propagator:

S(p) = Sp(P*)p + Su(p?)
NO COMPLEX POLES = Standard Dispersion Relations

ow (") =~ Im S (p?)

1

pp(P*) = - Im S, (p°)

[ 2@+ pu(q?)
S(p)_/() dq ppz—q2+i6 .

Positivity Conditions:

pp(P?) >0, p () — pu(p?) >0 &)




CHIRAL QCD

Quark sector — Ny = 2
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CHIRAL QCD

Quark sector — Ny = 2
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CHIRAL QCD

Quark sector — Ny = 2
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CHIRAL QCD

Quark sector: Ny =2, M = 0.65 GeV, m = 0.7 GeV
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CHIRAL QCD

Quark sector: Ny =2, M = 0.65 GeV, m = 0.7 GeV
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FAQ 1.

MORE SERIOUS LIST (that the Referees did not raise)

@ What about the Longitudinal Polarization ?
The Landau gauge is very special!

@ Can we Optimize the expansion (without Lattice Data) ?
May be by real observables, like glueball masses

@ |s there any proof of renormalizability ?
@ What about improving the expansion by RG ?

@ More questions and remarks are welcome!
THANK YOU
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