The Dark Side of the Propagators

Analytical approach to QCD in the infrared of Minkowski space

Fabio Siringo

Department of Physics and Astronomy University of Catania, Italy

LATTICE 2016 - Southampton, 25-30 July 2016

• The Dream:

The Dream:
 Do all the work analytically and forget about Lattice People!

• The Dream:

Do all the work analytically and forget about Lattice People!

Change the expansion point \to Massive Expansion also known as Optimized Perturbation Theory (OPT) and evaluate everything from first principles

The Dream:

Do all the work analytically and forget about Lattice People!

Change the expansion point \rightarrow Massive Expansion also known as Optimized Perturbation Theory (OPT) and evaluate everything from first principles

Reality:
 Not self-consistent vet → Ontimization

Not self-consistent yet \rightarrow Optimization by Lattice

• The Dream:

Do all the work analytically and forget about Lattice People!

Change the expansion point \to Massive Expansion also known as Optimized Perturbation Theory (OPT) and evaluate everything from first principles

Reality:

Not self-consistent yet \rightarrow Optimization by Lattice

but

we can analytically continue to Minkowski space!

 Perturbation Theory (PT) works well in the IR (Tissier+Wschebor,2010,2011 - Landau Gauge)

- Perturbation Theory (PT) works well in the IR (Tissier+Wschebor,2010,2011 - Landau Gauge)
- OPT is an old story: $(\mathcal{L}_0 + \delta \mathcal{L}_m) + (\mathcal{L}_{int} \delta \mathcal{L}_m)$

- Perturbation Theory (PT) works well in the IR (Tissier+Wschebor,2010,2011 - Landau Gauge)
- OPT is an old story: $(\mathcal{L}_0 + \delta \mathcal{L}_m) + (\mathcal{L}_{int} \delta \mathcal{L}_m)$
- [Massive propagator] + [mass counterterm $\delta\Gamma=m^2$]

- Perturbation Theory (PT) works well in the IR (Tissier+Wschebor,2010,2011 - Landau Gauge)
- OPT is an old story: $(\mathcal{L}_0 + \delta \mathcal{L}_m) + (\mathcal{L}_{int} \delta \mathcal{L}_m)$
- [Massive propagator] + [mass counterterm $\delta\Gamma=m^2$]

Nice features:

- Perturbation Theory (PT) works well in the IR (Tissier+Wschebor,2010,2011 - Landau Gauge)
- OPT is an old story: $(\mathcal{L}_0 + \delta \mathcal{L}_m) + (\mathcal{L}_{int} \delta \mathcal{L}_m)$
- [Massive propagator] + [mass counterterm $\delta\Gamma=m^2$]

Nice features:

• The mass kills itself at tree-level:

$$\Sigma_{tree} = - \times - = \delta \Gamma = m^2 \implies (-p^2 + m^2) - \Sigma = -p^2$$

- Perturbation Theory (PT) works well in the IR (Tissier+Wschebor,2010,2011 - Landau Gauge)
- OPT is an old story: $(\mathcal{L}_0 + \delta \mathcal{L}_m) + (\mathcal{L}_{int} \delta \mathcal{L}_m)$
- [Massive propagator] + [mass counterterm $\delta\Gamma=m^2$]

Nice features:

• The mass kills itself at tree-level:

$$\Sigma_{tree} = - \times - = \delta \Gamma = m^2 \implies (-p^2 + m^2) - \Sigma = -p^2$$

Mass divergences cancel in loops:

$$----+----=$$
 IR finite

- Perturbation Theory (PT) works well in the IR (Tissier+Wschebor,2010,2011 - Landau Gauge)
- OPT is an old story: $(\mathcal{L}_0 + \delta \mathcal{L}_m) + (\mathcal{L}_{int} \delta \mathcal{L}_m)$
- [Massive propagator] + [mass counterterm $\delta\Gamma=m^2$]

Nice features:

• The mass kills itself at tree-level:

$$\Sigma_{tree} = - \times - = \delta \Gamma = m^2 \implies (-p^2 + m^2) - \Sigma = -p^2$$

Mass divergences cancel in loops:

$$----+----=$$
 IR finite

The original Lagrangian is not modified

- Perturbation Theory (PT) works well in the IR (Tissier+Wschebor,2010,2011 - Landau Gauge)
- OPT is an old story: $(\mathcal{L}_0 + \delta \mathcal{L}_m) + (\mathcal{L}_{int} \delta \mathcal{L}_m)$
- [Massive propagator] + [mass counterterm $\delta\Gamma=m^2$]

Nice features:

• The mass kills itself at tree-level:

$$\Sigma_{tree} = - \times - = \delta \Gamma = m^2 \implies (-p^2 + m^2) - \Sigma = -p^2$$

Mass divergences cancel in loops:

- The original Lagrangian is not modified
- Standard UV behavior

- Perturbation Theory (PT) works well in the IR (Tissier+Wschebor,2010,2011 - Landau Gauge)
- OPT is an old story: $(\mathcal{L}_0 + \delta \mathcal{L}_m) + (\mathcal{L}_{int} \delta \mathcal{L}_m)$
- [Massive propagator] + [mass counterterm $\delta\Gamma=m^2$]

Nice features:

• The mass kills itself at tree-level:

$$\Sigma_{tree} = - \times - = \delta \Gamma = m^2 \implies (-p^2 + m^2) - \Sigma = -p^2$$

Mass divergences cancel in loops:

$$----+----=$$
 IR finite

- The original Lagrangian is not modified
- Standard UV behavior
- From first principles

A simple argument:

- Mass divergences arise from the massive propagator
- No mass divergences in the exact (scaleless) theory
- The Lagrangian is not modified

A simple argument:

- Mass divergences arise from the massive propagator
- No mass divergences in the exact (scaleless) theory
- The Lagrangian is not modified

The counterterms $\delta\Gamma=m^2$ must cancel the divergences. How many do we need?

A simple argument:

- Mass divergences arise from the massive propagator
- No mass divergences in the exact (scaleless) theory
- The Lagrangian is not modified

The counterterms $\delta\Gamma=m^2$ must cancel the divergences. How many do we need?

The integral is less divergent at each insertion. A finite number of insertions makes any loop integral convergent:

A simple argument:

- Mass divergences arise from the massive propagator
- No mass divergences in the exact (scaleless) theory
- The Lagrangian is not modified

The counterterms $\delta\Gamma=m^2$ must cancel the divergences. How many do we need?

The integral is less divergent at each insertion.

A finite number of insertions makes any loop integral convergent: divergences must cancel at a finite order

One-Loop third-order double expansion (Landau Gauge)

Yang-Mills \rightarrow F.S., Nucl. Phys. B **907** 572 (2016) QCD \rightarrow F.S., arXiv:1607.02040

UNIVERSAL SCALING

Ignoring RG effects, $\alpha \sim N\alpha_s$

$$\Sigma(p) = \alpha \Sigma^{(1)}(p) + \alpha^2 \Sigma^{(2)}(p, N) + \cdots$$
 (1)

$$\frac{\Sigma(p)}{\alpha p^2} = -F(p^2/m^2) + \mathcal{O}(\alpha); \qquad F(p^2/m^2) = -\frac{\Sigma^{(1)}}{p^2}$$
 (2)

$$\Delta(p) = \frac{Z}{p^2 - \Sigma(p)} = \frac{J(p)}{p^2} \tag{3}$$

Setting $Z = z (1 + \alpha \delta Z)$ (one-loop):

$$zJ(p)^{-1} = 1 + \alpha \left[F(p^2/m^2) - \delta Z \right] + \mathcal{O}(\alpha^2)$$
 (4)

$$zJ(p)^{-1} = 1 + \alpha \left[F(p^2/m^2) - F(\mu^2/m^2) \right] + \mathcal{O}(\alpha^2)$$
 (5)

Must exist x, y, z:

$$zJ(p/x)^{-1} + y = F(p^2/m^2) + F_0 + \mathcal{O}(\alpha)$$
 (6)

UNIVERSAL SCALING GLUON INVERSE DRESSING FUNCTION

UNIVERSAL SCALING GLUON INVERSE DRESSING FUNCTION

UNIVERSAL SCALING GHOST INVERSE DRESSING FUNCTION

Denoting by G(s) the ghost universal function $(F(s) \rightarrow G(s))$

UNIVERSAL SCALING

GHOST INVERSE DRESSING FUNCTION

The ghost universal function is just

$$G(s) = \frac{1}{12} \left[2 + \frac{1}{s} - 2s \log s + \frac{1}{s^2} (1+s)^2 (2s-1) \log (1+s) \right]$$

UNIVERSAL SCALING

GHOST INVERSE DRESSING FUNCTION

The ghost universal function is just

$$G(s) = \frac{1}{12} \left[2 + \frac{1}{s} - 2s \log s + \frac{1}{s^2} (1+s)^2 (2s-1) \log (1+s) \right]$$

TABLE of OPTIMIZED RENORMALIZATION **CONSTANTS:**

 $zJ(p/x)^{-1} + y = F(p^2/m^2) + F_0$

arXiv:1607.02040

						,	,
Data set	N	N_f	X	У	z	y'	z'
Bogolubsky et al.	3	0	1	0	3.33	0	1.57
Duarte et al.	3	0	1.1	-0.146	2.65	0.097	1.08
Cucchieri-Mendes	2	0	0.858	-0.254	1.69	0.196	1.09
Ayala et al.	3	0	0.933	-	-	0.045	1.17
Ayala et al.	3	2	1.04	-	-	0.045	1.28
Ayala et al.	3	4	1.04	-	-	0.045	1.28

Table: Scaling constants x, y, z (gluon) and y', z' (ghost). The constant shifts $F_0 = -1.05$, $G_0 = 0.24$ and the mass m = 0.73 GeV are optimized by requiring that x = 1 and y = y' = 0 for the lattice data of Bogolubsky et al. (2009)

RG invariant product (Landau Gauge - MOM-Taylor scheme):

$$\alpha_s(\mu) = \alpha_s(\mu_0) \frac{J(\mu)\chi(\mu)^2}{J(\mu_0)\chi(\mu_0)^2}$$
 What if $\delta F_0 = \delta G_0 = \pm 25\%$?

$$\mu_0 = 2$$
 GeV, $\alpha_s = 0.37$, data of Bogolubsky et al.(2009).

RG invariant product (Landau Gauge – MOM-Taylor scheme):

$$\alpha_s(\mu) = \alpha_s(\mu_0) \frac{J(\mu)\chi(\mu)^2}{J(\mu_0)\chi(\mu_0)^2}$$
 What if $\delta F_0 = \delta G_0 = \pm 25\%$?

$$\mu_0 = 0.15$$
 GeV, $\alpha_s = 0.2$, data of Bogolubsky et al.(2009).

RG invariant product (Landau Gauge - MOM-Taylor scheme):

$$\alpha_s(\mu) = \alpha_s(\mu_0) \frac{J(\mu)\chi(\mu)^2}{J(\mu_0)\chi(\mu_0)^2}$$
 What if $\delta F_0 = \delta G_0 = \pm 25\%$?

$$\mu_0 = 0.67$$
 GeV, $\alpha_s = 1.21$, data of Bogolubsky et al.(2009).

Does the photon acquire a mass by the same method?

- Does the photon acquire a mass by the same method?
- How can you get anything new by adding "zero" to the Lagrangian? (without inserting any physical ansatz or any model for NP physics)

- Does the photon acquire a mass by the same method?
- How can you get anything new by adding "zero" to the Lagrangian? (without inserting any physical ansatz or any model for NP physics)
- The method must be wrong otherwise it would also explain Chiral Symmetry Breaking

- Does the photon acquire a mass by the same method?
- How can you get anything new by adding "zero" to the Lagrangian? (without inserting any physical ansatz or any model for NP physics)
- The method must be wrong otherwise it would also explain Chiral Symmetry Breaking
- The method must be wrong otherwise the propagator could be analytically continued to Minkowski space where the gluon would get a physical dynamical pole

arXiv:1605.07357

arXiv:1605.07357

Fabio Siringo

arXiv:1605.07357

GENERALIZED SPECTRAL FUNCTION

HOW TO DEFINE A SPECTRAL FUNCTION WITH COMPLEX POLES?

If G(p) has complex poles then

$$G(p^2) = G^R(p^2) + \delta G(p^2)$$

where the *rational* function G^R just contains the poles

$$G^{R}(z) = \frac{R}{z - \alpha - i\beta} + \frac{R^{*}}{z - \alpha + i\beta}$$

and the finite part δG satisfies usual dispersion relations

Re
$$\delta G(p^2) = PV \int_0^{+\infty} \frac{\rho(\omega)}{p^2 - \omega} d\omega$$

$$\rho(\omega) = -\frac{1}{\pi} \operatorname{Im} \delta G(\omega + i\epsilon) = -\frac{1}{\pi} \operatorname{Im} G(\omega + i\epsilon)$$

 $G^R(p^2)$ cannot be reconstructed from Im G

Dispersion relations with complex poles → arXiv:1606.03769

BACK TO EUCLIDEAN SPACE

$$G^{R}(z) = \frac{R}{z - \alpha - i\beta} + \frac{R^{\star}}{z - \alpha + i\beta} \Longrightarrow \frac{p_E^2 + (\alpha + t\beta)}{p_E^4 + 2\alpha p_E^2 + (\alpha^2 + \beta^2)}$$

where $t = (\operatorname{Im} R)/(\operatorname{Re} R) = \tan[\arg(R)]$

RGZ model!

Ghost dressing function: $G(p^2) = \frac{\chi(p^2)}{p^2}$

$$\rho(p^{2}) = -\frac{1}{\pi} \operatorname{Im} \mathcal{G}(p^{2} + i\varepsilon) = \chi(0) \, \delta(p^{2}) - \frac{1}{\pi} \frac{\operatorname{Im} \chi(p^{2})}{p^{2}}$$

ANALYTIC CONTINUATION Ghost dressing function: $\mathcal{G}(p^2) = \frac{\chi(p^2)}{p^2}$

Lattice data are from Bogolubsky et al. (2009)

CHIRAL QCD Gluon sector

Optimized by the Lattice $N_f = 2$, m = 0.8 GeV M = ?

Lattice data are for two light quarks, from Ayala et al. (2012)

What about poles?

2 pairs of compex conjugated poles

CHIRAL QCD

Gluon sector

Optimized by the Lattice:

$$m=0.8~{\rm GeV}, M=0.65~{\rm GeV} \ m_1^2=(0.54\pm0.52i)~{\rm GeV}^2, \quad m_2^2=(1.69\pm0.1i)~{\rm GeV}^2$$

CHIRAL QCD Quark sector

$$\Sigma_q = -X + - S^{\circ \circ} + - S^{\bullet} + - S^{\bullet} + - S^{\bullet}$$

- The counterterm $\delta\Gamma=-M$ cancels the mass at tree-level
- A massive propagator from $loops \rightarrow S(p) = \frac{Z(p)}{p-M(p)}$
- A new parameter x = M/m

but

CHIRAL QCD Quark sector

- The counterterm $\delta\Gamma = -M$ cancels the mass at tree-level
- A massive propagator from $loops \rightarrow S(p) = \frac{Z(p)}{p-M(p)}$
- A new parameter x = M/m

but

- Agreement not as good as for pure YM theory (Z(p) is decreasing)
- M(p) depends on α_s
- Optimization is not easy without RG corrections!

Lattice data are: *unquenched*, $N_f = 2$, in the CHIRAL limit Bowman et al. (2005)

Lattice data are: *unquenched*, $N_f = 2$, in the CHIRAL limit Bowman et al. (2005)

Lattice data are: *unquenched*, $N_f = 2$, in the CHIRAL limit Bowman et al. (2005)

CHIRAL QCD

Quark sector: ANALYTIC CONTINUATION TO MINKOWSKY SPACE

Quark propagator:

$$S(p) = S_p(p^2) \not p + S_M(p^2)$$

NO COMPLEX POLES \implies Standard Dispersion Relations

Quark sector: ANALYTIC CONTINUATION TO MINKOWSKY SPACE

Quark propagator:

$$S(p) = S_p(p^2)\not p + S_M(p^2)$$

NO COMPLEX POLES \implies Standard Dispersion Relations

$$\rho_M(p^2) = -\frac{1}{\pi} \operatorname{Im} S_M(p^2)$$
$$\rho_p(p^2) = -\frac{1}{\pi} \operatorname{Im} S_p(p^2)$$

$$S(p) = \int_0^\infty dq^2 \frac{\rho_p(q^2)p + \rho_M(q^2)}{p^2 - q^2 + i\varepsilon}.$$

Quark sector: ANALYTIC CONTINUATION TO MINKOWSKY SPACE

Quark propagator:

$$S(p) = S_p(p^2)\not p + S_M(p^2)$$

NO COMPLEX POLES \implies Standard Dispersion Relations

$$\rho_M(p^2) = -\frac{1}{\pi} \operatorname{Im} S_M(p^2)$$
$$\rho_P(p^2) = -\frac{1}{\pi} \operatorname{Im} S_P(p^2)$$

$$S(p) = \int_0^\infty dq^2 \frac{\rho_p(q^2)p + \rho_M(q^2)}{p^2 - q^2 + i\varepsilon}.$$

Positivity Conditions:

$$\rho_p(p^2) \ge 0,$$

$$p \,\rho_p(p^2) - \rho_M(p^2) \ge 0$$

CHIRAL QCD

Quark sector: $N_f = 2$, M = 0.65 GeV, m = 0.7 GeV

Positivity Conditions:

$$\rho_p(p^2) \ge 0, \qquad p \, \rho_p(p^2) - \rho_M(p^2) \ge 0$$

CHIRAL QCD

Quark sector: $N_f = 2$, M = 0.65 GeV, m = 0.7 GeV

Positivity Conditions:

$$\rho_p(p^2) \ge 0, \qquad p \, \rho_p(p^2) - \rho_M(p^2) \ge 0$$

What about the Longitudinal Polarization?
 The Landau gauge is very special!

- What about the Longitudinal Polarization?
 The Landau gauge is very special!
- Can we Optimize the expansion (without Lattice Data)?
 May be by real observables, like glueball masses

- What about the Longitudinal Polarization?
 The Landau gauge is very special!
- Can we Optimize the expansion (without Lattice Data)?
 May be by real observables, like glueball masses
- Is there any proof of renormalizability?

- What about the Longitudinal Polarization?
 The Landau gauge is very special!
- Can we Optimize the expansion (without Lattice Data)?
 May be by real observables, like glueball masses
- Is there any proof of renormalizability?
- What about improving the expansion by RG?

- What about the Longitudinal Polarization?
 The Landau gauge is very special!
- Can we Optimize the expansion (without Lattice Data)?
 May be by real observables, like glueball masses
- Is there any proof of renormalizability?
- What about improving the expansion by RG?
- More questions and remarks are welcome!

THANK YOU

