Long distance contribution to ϵ_{K}

Ziyuan Bai

Columbia University
RBC and UKQCD collaboration

July 26, 2016

RBC \& UKQCD Collaboration ($K \rightarrow \pi \pi$ Subgroup)

- BNL
- Mattia Bruno
- Taku Izubuchi
- Chulwoo Jung
- Christoph Lehner
- Amarjit Soni
- Columbia
- Ziyuan Bai
- Norman Christ
- Christopher Kelly
- Robert Mawhinney
- Daiqian Zhang
- Connecticut
- Tom Blum
- Plymouth Univeristy
- Nicholas Garron
- University of Southampton
- Chris Sachrajda
- Tadeusz Janowski
- University of Edinburgh
- Peter Boyle

The RBC \& UKQCD collaborations

BNL and RBRC	Greg McGlynn David Murphy Jiqun Tu
Mattia Bruno Tomomi Ishikawa Taku Izubuchi Chulwoo Jung Christoph Lehner Meifeng Lin	University of Connecticut
Taichi Kawanai	Tom Blum
Hiroshi Ohki Shigemi Ohta (KEK) Amarjit Soni Sergey Syritsyn	Peter Boyle Guido Cossu Luigi Del Debbio
CERN	Richard Kenway Julia Kettle
Marina Marinkovic	Ava Khamseh Brian Pendleton Antonin Portelli Columbia University
Oliver Witzel Azusa Yamaguchi	
Ziyuan Bai KEK Norman Christ Luchang Jin	

Peking University
Xu Feng
Plymouth University
Nicolas Garron
University of Southampton
Jonathan Flynn
Vera Guelpers
James Harrison
Andreas JuettnerAndrew LawsonEdwin LizarazoChris Sachrajda
Francesco Sanfilippo
Matthew SpraggsTobias TsangYork University (Toronto)Renwick Hudspith

1. Introduction
2. Introduction to lattice calculation
3. Review of previous talk
4. NLO perturbative matching
5. Results

- ϵ_{K}, with experimental value $2.228(11) \times 10^{-3}$ measures indirect $C P$ violation in $K^{0}-\overline{K^{0}}$ system.
- Standard Model contribution can be separated into short distance and long distance part:

1. Short distance which is estimated to be dominant contribution.
2. The long distance part which has been estimated to be few percent, and must be determined using lattice QCD.

- Previous calculation of ϵ_{K} based on standard model only include the short distance contribution. The error on the results are mostly from CKM matrix. With exclusive $V_{c b}$, results are $\approx 3 \sigma$ away from experiment, while with inclusive of $V_{c b}$, the resultis consistent with experiment.
- ϵ_{K} is determined by:

$$
\begin{gathered}
\epsilon_{K}=\exp i \phi_{\epsilon} \sin \phi_{\epsilon}\left(\frac{\operatorname{Im} M_{0 \overline{0}}}{\Delta M_{K}}+\xi\right) \\
\phi_{\epsilon}=43.52 \pm 0.005^{\circ}, \quad \xi=\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}} \cdot \quad M_{0 \overline{0}}=\left\langle\bar{K}^{0}\right| H_{W}^{\Delta S=2}\left|K^{0}\right\rangle
\end{gathered}
$$

- The $H_{W}^{\Delta S=2}$ is given by (the prime means we have used CKM unitarity and do a charm subtraction in the internal quark lines):

$$
H_{\mathrm{eff}}^{\Delta S=2}=\frac{G_{F}^{2}}{16 \pi^{2}} M_{W}^{2}\left[\lambda_{u}^{2} \eta_{1}^{\prime} S_{0}^{\prime}\left(x_{c}\right)+\lambda_{t}^{2} \eta_{2}^{\prime} S_{0}^{\prime}\left(x_{t}\right)+2 \lambda_{u} \lambda_{t} \eta_{3}^{\prime} S_{0}^{\prime}\left(x_{c}, x_{t}\right)\right] Q_{\mathrm{LL}}
$$

- We have three terms. λ_{u}^{2} term: real. λ_{t}^{2} term: purely short distance. $\lambda_{u} \lambda_{t}$ term: the term needing lattice calculation.
- The relevant part of H_{W} can be written as (dropping some coefficients):

$$
\begin{aligned}
H_{e f f}^{\Delta S=2} & =\frac{G_{F}^{2}}{2} \lambda_{u} \lambda_{t}\left(\sum_{i=1}^{2} \sum_{j=1}^{6} c_{i} C_{j} \sum_{x, y} Q_{i j}(x, y)+\sum_{x} C_{7} O_{7}(x)\right) \\
Q_{7} & =(\bar{s} d)_{v-A}(\bar{s} d)_{v-A} \\
Q_{i, j}(x, y) & =\frac{1}{2} T\left\{2 Q_{i}^{c c}(x) Q_{j}^{c c}(y)-Q_{i}^{u c}(x) Q_{j}^{c u}(y)-Q_{i}^{c u}(x) Q_{j}^{u c}(y)\right\}(j=1,2) \\
Q_{i, j}(x, y) & =\frac{1}{2} T\left\{\left[\left(Q_{i}^{c c}(x)-Q_{i}^{\mu u}(x)\right] Q_{j}(y)+Q_{j}(x)\left[Q_{i}^{c c}(y)-Q_{i}^{u u}(y)\right]\right\}(j=3, \ldots, 6)\right.
\end{aligned}
$$

$Q_{j}, j=1,2$ are the current-current operators, and $j=3, \ldots, 6$ are the QCD penguin operators.

- Results are logarithm divergent when two operators are close to each other. Need a short distance correction and match to perturbative theory.
- We have five types of diagram to evaluate on the lattice.

Figure: Type 1 and type 2 four point diagrams. c means current-current operator, p means penguin operator.

Introduction to lattice calculation

- We have five types of diagram to evaluate on the lattice.

Figure : Type 3, $4 \& 5$ four point diagrams. c means current-current operator, p means penguin operator. type 5 must have a penguin operator.

Review of previous talk.

- Last year, we presented our preliminary calculation on the same lattice with this work (details follow):

1. Correct the short distance divergence by performing a LO perturbative matching. This is done by introducing a RI scale $\mu_{R I}$ and performing perturbative calculation on the box diagram.
2. Included type $1 \& 2$ diagrams in the lattice calculation, leaving out type 3, $4 \& 5$ diagrams.

- We got the results in the following table. Their dependence on the artificially RI scale $\mu_{R I}$ is very small.

$\mu_{R I}(\mathrm{GeV})$	$\operatorname{Im} M_{00}^{u t, l d}$	$\operatorname{Im} M_{00}^{u t, c o n t}$	$\operatorname{Im} M_{00}^{u t}$
1.54	$-0.871(30)$	$-4.772(56)$	$-5.642(64)$
1.92	$-1.065(30)$	$-4.536(54)$	$-5.601(62)$
2.31	$-1.226(31)$	$-4.350(51)$	$-5.576(60)$

Table : Im $M_{0 \overline{0}}^{u t}$ in unit of $10^{-15} \mathrm{MeV}$.

- With the $\lambda_{t} \lambda_{t}$ part added, the final result for ϵ_{K} is $3.019(45) \times 10^{-3}$, much alrger than experimental value. This is because we only include LO in perturbative calculation, and the NLO correction is quite significant.
- We define the RI bilocal operator for both lattice and dimensional regularization:

$$
\begin{gathered}
{\left[Q_{i} Q_{j}\right]^{R I}\left(\mu_{R I}\right)=Z_{i}^{l a t \rightarrow R I}(\mu, a) Z_{j}^{l a t \rightarrow R I}(\mu, a)\left[Q_{i} Q_{j}\right]^{l a t}-E_{l a t}^{i, j}(\mu, a) Z^{l a t \rightarrow R I}(\mu, a) O_{L L}^{l a t}} \\
{\left[Q_{i} Q_{j}\right]^{R I}\left(\mu_{R I}\right)=z_{i}^{\overline{M S} \rightarrow R I}\left(\mu, \mu_{R I}\right) Z_{j}^{\overline{M S} \rightarrow R I}\left(\mu_{R I}\right)\left[Q_{i} Q_{j}\right]^{\overline{M S}}-E_{\overline{M S}}^{i, j}\left(\mu, \mu_{R I}\right) Z^{\overline{M S} \rightarrow R I}\left(\mu, \mu_{R I}\right) O_{L L}^{\overline{M S}}}
\end{gathered}
$$

- The RI operators are defined by $\left\langle Q_{i} Q_{j}\right\rangle_{p^{2}=\mu_{R I}^{2}}^{R 1}=0$.
- Finally, we arrive at the following formula. The first two lines are the term we want to evaluate (long distance correction), and the last line is the term that's existing in the conventional ϵ_{K} calculation (C_{j} are the Wilson coefficients).

$$
\begin{aligned}
& H_{\text {eff }, u t}^{\Delta S=2}=\sum_{i=1}^{2} \sum_{j=1}^{6} \\
& \left.\quad C_{i}^{\overline{M S}}(\mu) C_{j}^{\overline{M S}}(\mu) Z_{i}^{l a t \rightarrow \overline{M S}} Z_{j}^{l a t \rightarrow \overline{M S}}\left(Q_{i}^{\text {lat }} Q_{j}^{\text {lat }}-\tilde{E}_{l a t}^{i, j}\left(\mu_{R I}\right) O_{L L}^{\text {lat }}\right)\right\} \begin{array}{l}
\text { lattice } \\
\text { corrections }
\end{array} \\
& +C_{i}^{\overline{M S}}(\mu) C_{j}^{\overline{M S}}(\mu) \Delta R_{\overline{M S}}^{i, j}\left(\mu_{R I}\right) Z^{l a t \rightarrow \overline{M S}} O_{L L}^{l a t} \\
& \left.+\left[C_{i}^{\overline{M S}}(\mu) C_{j}^{\overline{M S}}(\mu) R_{\overline{M S}}^{i, j}(\mu)+C_{7}^{\overline{M S}}(\mu)\right] Z^{\text {lat } \rightarrow \overline{M S}} O_{L L}^{l a t}\right\} \text { conventional operator }
\end{aligned}
$$

- To evaluate the $H_{\text {eff }, u t}^{\Delta S=2}$ to NLO, which is order $\mathcal{O}(1)$, or order $\mathcal{O}\left(\alpha_{s} \ln \mu / M_{W}\right)$, we only have to evaluate the $\Delta R_{\overline{M S}}^{i, j}\left(\mu_{R I}\right)$ to the same order.
- We find $\Delta R_{\frac{i, j}{i S}}\left(\mu_{R I}\right)$ by:

$$
\begin{array}{r}
\Delta R_{\overline{M S}}^{i, j}\left(\mu_{R I}, m_{c}\right)=\tilde{E}_{\frac{i, j}{M S}}\left(\mu, \mu_{R I}, m_{c}\right)-\tilde{E}_{\frac{1, j}{M S}}\left(\mu, 0, m_{c}\right) \\
\left\langle Q_{i}^{\overline{M S}} Q_{j}^{\overline{M S}}-\tilde{E}_{\frac{i, j}{i S}}^{i,}\left(\mu, \mu_{R I}, m_{c}\right) O_{L L}^{\overline{M S}}\right\rangle_{p^{2}=\mu_{R I}^{2}}=0
\end{array}
$$

- In the obove equation, $\Delta R_{\frac{i, j}{M S}}^{i}\left(\mu_{R I}\right)$ is finite (no ultra-violet divergence). We found (results are preliminary):

$$
\begin{aligned}
\Delta R_{\frac{M}{M S}}^{i, j}\left(\mu_{R I}\right)^{(c-u, c), L L}= & 4 m_{c}^{2}\left\{\frac{1}{32 \pi^{2}} \int_{0}^{1} \mathrm{~d} \times \ln \frac{m_{c}^{2}}{x(1-x) \mu_{R I}^{2}+m_{c}^{2}}\right. \\
& \left.+\frac{-\left(\mu_{R I}^{2}+m_{c}^{2}\right)}{32 \pi^{2} m_{c}^{2}} \int_{0}^{1} \mathrm{~d} \times \ln \frac{x(1-x) \mu_{R I}^{2}+m_{c}^{2}}{x \mu_{R I}^{2}+m_{c}^{2}}\right\} \tau_{i, j} \\
\Delta R_{\overline{M S}}^{i, j}\left(\mu_{R I}\right)^{(c c-u u), L L}= & \frac{-m^{2}}{8 \pi^{2}}\left\{-\frac{p^{2}}{m^{2}} \int_{0}^{1} \mathrm{~d} \times \ln \frac{x(1-x) p^{2}+x m^{2}}{x(1-x) p^{2}}\right. \\
& \left.+\int_{0}^{1} \mathrm{dx} \ln \frac{x(1-x) p^{2}+m^{2}}{x(1-x) p^{2}+x m^{2}}-1\right\} \tau_{i, j} \\
\Delta R_{\overline{M S}}^{i, j}\left(\mu_{R I}\right)^{(c c-u u), L R}= & 8 m_{c}^{2} \times \frac{1}{16 \pi^{2}} \int_{0}^{1} \mathrm{~d} \times \ln \frac{m^{2}}{x(1-x) p^{2}+m^{2}} \tau_{i, j}
\end{aligned}
$$

- We work on a $24^{3} \times 64$ lattice, with $1 / a=1.78 \mathrm{GeV}$. The $m_{\pi}=329 \mathrm{MeV}$, $m_{K}=575 \mathrm{MeV}$, and the input charm mass is 941 MeV .
- Two wall sources are used for the kaons, and we use random volume source propagator to evaluate the self loop propagators in type 3/4/5 diagrams.
- Lanczos algorithm is used to accelerate the light quark inversion with 300 eigenvectors.
- The code runs on a half rack of BGQ, and takes 3 hours per configuration.
- We use non-perturbative method to remove the short distance divergence in the lattice calculation, which is by adding a local operator $O_{L L}=(\bar{s} d)_{V-A}(\bar{s} d)_{V-A}$ with coefficient $\tilde{E}_{l a t}^{i, j}$ found by:

$$
\left\langle Q_{i}^{l a t} Q_{j}^{l a t}-\tilde{E}_{l a t}^{i, j}\left(\mu_{R I}\right) O_{L L}^{l a t}\right\rangle_{p^{2}=\mu_{R I}^{2}}=0
$$

- What we calculate on the lattice is the 'long distance correction', and the final ϵ_{K} is found by adding our result to the conventional short distance calculation.

$$
\begin{aligned}
H_{\text {eff }, u t, \text { ld corr }}^{\Delta S=2}= & C_{i}^{\overline{M S}}(\mu) C_{j}^{\overline{M S}}(\mu) Z_{i}^{\text {lat } \rightarrow \overline{M S}} Z_{j}^{\text {lat } \rightarrow \overline{M S}}\left(Q_{i}^{\text {lat }} Q_{j}^{\text {lat }}-\tilde{E}_{l a t}^{i, j}\left(\mu_{R I}\right) O_{L L}^{\text {lat }}\right) \\
& +C_{i}^{\overline{M S}}(\mu) C_{j}^{\overline{M S}}(\mu) \Delta R_{\overline{M S}}^{i, j}\left(\mu_{R I}\right) Z^{\text {lat } \rightarrow \overline{M S}} O_{L L}^{\text {lat }}
\end{aligned}
$$

- We call the first term long distance lattice result, and we call the second term the correction term, which is used to match to the conventional short distance perturbation calculation.
- The result only inlcuding type $1 / 2$ diagrams is given by:

$\mu_{R I}$	$\operatorname{Im} M_{0,0}^{u t, R I}$ from lat	$\operatorname{Im} M_{0,0}^{u t, R I \rightarrow M S}$ from PT	$\operatorname{Im} M_{0,0}^{u t / d}$ corr the sum	contribution to $\left\|\epsilon_{K}\right\|$
1.54	$-0.871(30)$	0.1890	$-0.682(30)$	0.1384×10^{-3}
1.92	$-1.065(30)$	0.3343	$-0.731(30)$	0.1483×10^{-3}
2.11	$-1.151(31)$	0.4250	$-0.726(31)$	0.1473×10^{-3}
2.31	$-1.226(31)$	0.5335	$-0.693(31)$	0.1405×10^{-3}
2.56	$-1.302(30)$	0.6879	$-0.614(30)$	0.1246×10^{-3}

TABLE: Im $M_{0, \overline{0}}$ at different scale $\mu_{R I}$ (unit $10^{-15} \mathrm{MeV}$), and there contribution to $\left|\epsilon_{K}\right|$. We have fixed $\mu=2.15 \mathrm{GeV}$, which is the energy scale we find the Wilson coefficients.

Results with all diagrams.

- The type $1 \& 2$ diagram contribution to $\operatorname{Im} M_{00}$ is in the following table. The total contribution to ϵ_{K} is $2.16(4) \times 10^{-4}$.

$Q_{1} Q_{1}$	$Q_{1} Q_{2}$	$Q_{1} Q_{3}$	$Q_{1} Q_{4}$	$Q_{1} Q_{5}$	$Q_{1} Q_{6}$
	$Q_{2} Q_{2}$	$Q_{2} Q_{3}$	$Q_{2} Q_{4}$	$Q_{2} Q_{5}$	$Q_{2} Q_{6}$
$0.4072(58)$	$-0.4610(097)$	$-0.0849(43)$	$-0.0017(07)$	$0.0337(24)$	$-0.1049(037)$
	$1.6395(261)$	$-0.0024(11)$	$-0.1733(65)$	$0.0197(27)$	$-0.2068(165)$

TABLE : contribution to $\operatorname{Im} M_{0, \overline{0}}$ from type $1 / 2$ diagrams, with all the relevant Wilson coefficient multiplied. We used $\mu_{R I}=1.92 \mathrm{GeV}$.

Results with all diagrams.

- The type 3 diagram contribution to $\operatorname{Im} M_{0 \overline{0}}$ is in the following table. The total contribution to ϵ_{K} is $3.67(63) \times 10^{-4}$.

$Q_{1} Q_{1}$	$Q_{1} Q_{2}$	$Q_{1} Q_{3}$	$Q_{1} Q_{4}$	$Q_{1} Q_{5}$	$Q_{1} Q_{6}$
	$Q_{2} Q_{2}$	$Q_{2} Q_{3}$	$Q_{2} Q_{4}$	$Q_{2} Q_{5}$	$Q_{2} Q_{6}$
$-0.0011(43)$	$0.0780(0377)$	$0.0045(14)$	$-0.0138(050)$	$-0.0379(121)$	$0.3238(1042)$
	$0.3347(1066)$	$0.0166(50)$	$-0.0605(167)$	$-0.1512(387)$	$1.3177(3263)$

Table : contribution to $\operatorname{Im} M_{0, \overline{0}}$ from type 3 diagrams, with all the relevant Wilson coefficient miltiplied.

- The type 5 diagram contribution to $\operatorname{Im} M_{0 \overline{0}}$ is in the following table. The total contribution to ϵ_{K} is $2.95(63) \times 10^{-4}$.

$Q_{1} Q_{1}$	$Q_{1} Q_{2}$	$Q_{1} Q_{3}$	$Q_{1} Q_{4}$	$Q_{1} Q_{5}$	$Q_{1} Q_{6}$
	$Q_{2} Q_{2}$	$Q_{2} Q_{3}$	$Q_{2} Q_{4}$	$Q_{2} Q_{5}$	$Q_{2} Q_{6}$
0	0	$-0.0062(07)$	$0.0118(13)$	$-0.0087(129)$	$-0.4144(1260)$
0	0	$-0.0261(29)$	$0.0492(51)$	$0.1440(462)$	$-1.2042(4208)$

TABLE : contribution to $\operatorname{Im} M_{0, \overline{0}}$ from type 5 diagrams, with all the relevant Wilson coefficient miltiplied.

- The type 4 diagram has very large error, due to the fact that the Q_{5}, Q_{6} has very strong coupling to vacuum, and we are doing a not well-correlated vacuum subtraction.
- We are re-running some measurements to perform better vacuum subtraction so we can have better accuracy.

Results with all diagrams.

- The following table is the contribution to $\operatorname{Im} M_{0 \overline{0}}$ when we include all 5 types of diagrams.

$Q_{1} Q_{1}$	$Q_{1} Q_{2}$	$Q_{1} Q_{3}$	$Q_{1} Q_{4}$	$Q_{1} Q_{5}$	$Q_{1} Q_{6}$
	$Q_{2} Q_{2}$	$Q_{2} Q_{3}$	$Q_{2} Q_{4}$	$Q_{2} Q_{5}$	$Q_{2} Q_{6}$
$0.664(42)$	$-1.977(576)$	$-0.125(20)$	$0.179(081)$	$0.923(182)$	$-4.216(1472)$
$0(0)$	$2.487(2311)$	$0.040(71)$	$-0.129(340)$	$0.852(759)$	$-7.683(6506)$

TABLE : contribution to $\operatorname{Im} M_{0, \overline{0}}$ from type 5 diagrams, with all the relevant Wilson coefficient miltiplied.

- The contribution to ϵ_{K} is

$$
\epsilon_{K}^{u t, l d}-1.8(12) \times 10^{-3}
$$

This is a very large number because of the large error on type 4 diagram (with a Q_{5} or Q_{6} operator).

- Although the result above has very large error, but it show us that when we include type 4 diagrams, it may cancel the contribution of other 4 types of diagrams (final answer changes sign).
- We are now able to do NLO perturbative matching and produce reasonable result for the long distance correction of ϵ_{K}.
- With the perturbative matching done, our type $1 / 2$ diagram contribution to ϵ_{K} is $1.48(4) \times 10^{-4}$, type 3 diagram contribution is $3.67(63) \times 10^{-4}$, type 5 contribution is $2.95(63) \times 10^{-4}$.
- Without type 4 diagram, our long distance correction to ϵ_{K} is $8.1(9) \times 10^{-4}$. This is about 30% of the total experimental ϵ_{K}. But we are expecting that type 4 diagram will cancel some of this result when done correctly.
- We are currently re-running the type 4 measurements using a more precise vacuum subtraction method. This should gives us much better error for the type 4 diagrams and allow us to resolve the final long distance correction to ϵ_{K}.
- Comparison with experiment is for orientation only since we are using non-physical kinematics with $m_{\pi}=329 \mathrm{MeV}, m_{c}=941 \mathrm{MeV}$ on a $1 / a=1.78 \mathrm{GeV}$ lattice.

