

Nuclear Forces, Equation of State and Astrophysical Environments,

1000

Gandolfi, Gezerlis and Carlson, Annual Reviews of Nuclear and Particle Science (2015)

Hebeler, Lattimer, Pethick and Schwenk, Ap.J. 2013

Rare Isotope Facilities Canada, Germany, Japan, Korea, US, ...:

Experiment (US\$ 730M)

Theory

Observation

nnnn

LIGO - Imprints Gravity Waves

Nuclear Matrix Elements

= V.

v, e, µ, X - JLab, v-experiments, DUNE, DM, edm, ...

Gluons and an EIC

Future experimental QCD Program will be an Electron-Ion Collider ~ 2025

The 2015 LONG RANGE PLAN for NUCLEAR SCIENCE

(H. Mäntysaari and B. Schenke)

1 fm

Phiala Shanahan, First Lattice QCD Study of Gluonic Transversity, later this week

Low-Energy Nuclear Physics

Methods and Difficulties Many-Body Spectra

e.g., what was found and expected at $M_{\pi} \sim 800 \; MeV$

Methods and Difficulties Signal-to-Noise

The Golden Window for Nuclei dictated by source and sink structure

Methods and Difficulties Signal-to-Noise

Energy scale of the signal-to-noise ratio

Methods and Difficulties Contractions

Detmold and Orginos (2011) Yamazaki et al (2011) Doi and Endres (2012)

Large number of contractions

Naively: Proton : N $^{cont} = 2$ ^{235}U : N $^{cont} = 10^{1494}$

Symmetries provide significant reduction Automation, Recursion, ... delay the problem but it remains

Methods and Difficulties Correlators

> M. Lüscher Deutsches Elektronen-Synchrotron DESY. Hamburg

Explicitly, the stationary effective Schrödinger equation in the centre-ofmass frame reads

$$-\frac{1}{2\mu}\Delta\psi(\mathbf{r}) + \frac{1}{2}\int d^3r' U_E(\mathbf{r},\mathbf{r}')\psi(\mathbf{r}') = E\psi(\mathbf{r}), \qquad (7.1)$$

where the parameter E is related to the true energy W of the system through

$$V = 2\sqrt{m^2 + mE}.$$
 (7.2)

The "potential" $U_E(\mathbf{r}, \mathbf{r}')$ is the Fourier transform of the modified Bethe-Salpeter kernel $\hat{U}_E(\mathbf{k}, \mathbf{k}')$ introduced in ref.[3]. It depends analytically on

E in the range -m < E < 3m and is a smooth function of the coordinates **r** and **r'**, decaying exponentially in all directions \dagger . Furthermore, the potential

Methods and Difficulties Correlators

HAL QCD method(s): HAL QCD

Methods and Difficulties Correlators

Luscher's method(s): PACS, NPLQCD, Mainz,

Applicable out to inelastic threshold, then can be extended by including other channels and S-matrix, $k^2 < m_\pi \ M_N$.

Effective Range Expansion valid below t-channel cut, $k < m_{\pi}/2$

Statistics of Correlation Functions

Log Normal in plateau region evolves into symmetric but non-Gaussian at late times

Noise, sign problems, and statistics, Michael G. Endres, David B. Kaplan, Jong-Wan Lee, Amy N. Nicholson, Phys.Rev.Lett. 107 (2011) 201601 14 Distribution of Canonical Determinants in QCD, Andrei Alexandru, C. Gattringer, H. -P. Schadler, K. Splittorff, J.J.M. Verbaarschot, Phys.Rev. D91 (2015) no.7, 074501

NN and Nuclei PACS

Multi-nucleon focus : nn, d,³He, ⁴He $m_{\pi} \sim 145$ MeV

Talk by Takeshi Yamazaki

NN and Nuclei PACS

Multi-nucleon focus : nn, d,³He, ⁴He $m_{\pi} \sim 300 \text{ MeV}$

BB Interactions HAL QCD

Towards Lattice QCD Baryon Forces at the Physical Point: First Results Takumi Doi *et al.* (HAL QCD). arXiv:1512.04199 [hep-lat]

Slides prepared by T. Doi - thank you

BB Interactions HAL QCD

Do not use plateaus in EMPs to extract $U_E(r,r')$

BB Interactions Mainz

Parikshit Junnarkar, Anthony Francis, Jeremy Green, Chuan Miao, Thomas Rae, Hartmut Wittig, PoS CD15 (2015) 079, PoS LATTICE2015 (2016)

NN Higher Partial Waves

Nuclei from QCD

Beane et al (NPLQCD), Phys.Rev. D87 (2013) 3, 034506, Phys.Rev. C88 (2013) 2, 024003

NN Interactions NPLQCD

Deuteron appears to be unnatural but not finely-tuned ?? Generic feature of YM with n_f=3

- Cancellation between channels in dense matter energy-shift of hyperon
- Fit LO chiral Effective Hamiltonian by explicit diagonalization in momentum space.
- \bullet Reproduces S-matrices obtained using Luscher's method at energy eigenvalues but large radius of interaction in 3S_1
- In process of being refined

Hyperon-Nucleon Interactions and the Composition of Dense Nuclear Matter from Quantum Chromodynamics, Beane et al (NPLQCD), Phys.Rev.Lett. 109 (2012) 172001

Recently, HAL QCD has suggested that practitioners of Luscher's method have been seduced by false plateaus !

Possible for non-isolated states - will become an increasing problem toward the physical point

Signal-to-noise problem presents challenge for establishing ground states

HAL QCD and PACS have performed tests with Wall-sources and localized sources.

e.g.,

Mirage in Temporal Correlation functions for Baryon-Baryon Interactions in Lattice QCD, Takumi Iritani et al.. arXiv:1607.06371

Is there a Plateau Crisis ?

Slides from Yamazaki on their careful comparisons - thank you.

Needs much higher statistics in this study

All states need to be in their ground states before any calculations of ground state properties of multi-baryon systems are meaningful - including taking ratios of C(t). This applies to all methods.

Is there a Plateau Crisis ?

PACS : Yamazaki et al (2016)

Slide prepared by Yamasaki of PACS-CS - thank you.

Observations:

- the Smeared Source plateaus earlier than the Wall
- when the Wall eventually plateaus, they are consistent

Light Nuclei and Hypernuclei from Quantum Chromodynamics in the Limit of SU(3) Flavor Symmetry NPLQCD Collaboration, Phys.Rev. D87 (2013) no.3, 034506

Thoughts:

- Wall-Sources are not great for these calcs.
- Publications could show all involved correlators for clarity

Note:

- HAL QCD's method does not yield bound states.
 - Would like to see results near the physical point and understand the quark mass dependence

Decomposition of Nuclear Masses and Bindings

Nucleon Mass

Binding ³He (m_{π} =450 MeV)

The Periodic Table as a function of the quark masses

Enhances the scope of the Lattice Calculations

Effective Field Theory for Lattice Nuclei , N. Barnea et al, Nov 20, 2013. 5 pp. , Phys. Rev. Lett. 114 (2015) 5, 052501

First Inelastic Nuclear Reaction :

Ab Initio Calculation of the np \rightarrow d γ Radiative Capture Process, NPLQCD, Phys. Rev. Lett. 115 (2015) 13, 132001

Magnetic Moments Neutron Spin States

NPLQCD, Phys.Rev.Lett. 113 (2014) no.25, 252001 and Phys.Rev. D92 (2015) no.11, 114502

Dark Nuclei

BSM Nuclei as Dark Matter ?

Use QCD technology for SU(2) color - bound states.

William Detmold, Matthew McCullough, and Andrew Pochinsky, Phys. Rev. D 90, 115013 (2014), Phys. Rev. D 90, 114506 (2014).

A=2 : NN, NA, N Σ , AA... $\Xi\Xi$, $\Omega\Omega$

S-matrix : Bound states and s-wave and higher scattering, Luscher's method for S-matrix, HAL QCD's methods, Effective Hamiltonians

Magnetic and Axial moments and polarizabilities, Four-quark operators, reactions

A=3, 4 : ³He, nnn, NNΛ, ..., ΞΞΞ,

S-matrix : Bound states, HAL QCD's methods, matching to NNEFT and phenomenological nuclear methods

Magnetic and Axial moments and polarizabilities,

A>4 : p-shell nuclei

Bound states and continuum states, matching to NNEFT and phenomenological nuclear methods

Anticipated Progress

- Lighter pion masses
 groups already at physical point
- Higher precision
 needed at all masses
- Multi-nucleon forces
- P-shell and SD-shell nuclei
- Matrix elements

- Light Nuclei, nuclear forces and the structure of matter are emerging directly from Quantum Chromodynamics
- Exciting progress on the path to supporting and complementing the experimental programs in NP and HEP
- Some groups at the physical point already!
 - Away from physical point calculations are also required to refine chiral nuclear forces
 reveal interesting features of the strong interactions
- (Known) challenges lie ahead

FIN