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Motivations

I In the real world up and down quarks have different masses and electric charges.

I Isospin-breaking effects are typically a few percent effects:

mu − md

Mp
' 0.3% αEM = 0.7%

Mn −Mp

Mn
' 0.1%

I From FLAG16 [Aoki et al., arXiv:1607.00299] and [PDG review, Rosner et al., 2016], [Cirigliano et al.,

Rev. Mod. Phys. 84, 399 (2012)]

fπ± = 130.2(1.4) MeV err = 1% δχPT
QED (π− → `−ν̄) = 1.8%

fK± = 155.6(0.4) MeV err = 0.3% δχPT
QED (K− → `−ν̄) = 1.1%

f+(0) = 0.9704(24)(22) err = 0.5% δχPT
QED (K → π`ν̄) = [0.5, 3]%
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Motivations

I Semileptonic B decays (measurement of |Vcb|)

B → D(∗)
`ν

relevant for Belle II (data taking starts in 2018). Radiative corrections are expected to be of
about 3%.
PDG review 2015 update, Olive et al. (PDG), Chin. Phys. C, 38, 090001 (2014)

Bailey et al. (Fermilab Lattice and MILC Collab.), Phys. Rev. D89, 114504 (2014)

Aubert et al. (BaBar), Phys. Rev. Lett. 100, 231803 (2008)

Adam et al. (CLEO), Phys. Rev. D 67, 032001 (2003)

Aubert et al. (BaBar), Phys. Rev. D 79, 012002 (2009)

Amhis et al. (HFAG), arXiv:1207.1158 [hep-ex]

I Radiative corrections have three contributions:

I Short-distance contributions (photons coupling to the W ). These contributions can be
systematically accounted for (OPE).

I Long-distance soft-photon contributions, in loops and finale-state radiation, a.k.a.
inner-bremsstrahlung. These are analytically calculable.

I Long-distance hard-photon contributions, a.k.a. structure-dependent contributions.
These are fully non-perturbative, and they are either neglected or estimated by
saturating relevant matrix elements with a few resonances (for light mesons one can use
χPT).

I We can and should do better than this.



Two ways for QCD+QED on the lattice

I Expand observables with respect to αem and simulate QCD only.

de Divitiis et al. (RM123), Phys.Rev. D87 (2013) 11, 114505.

E.g. Cottingham formula for the mass correction:

∆m = −
e2

4m

∫
d4k

(2π)4

1

k2

∫
d4x e−ikx〈h|T{jµ(x)jµ(0)}|h〉c,QCD + O(e4)

Pros:
Only O(α0

em) observables.
Cons:
Complex observables (e.g. a 4-point functions for
mass correction), typically involving fermionic dis-
connected diagrams.

I Simulate QCD+QED on the lattice.
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Borsanyi et al., Science 347 (2015) 1452-1455.

Pros:
Simpler observables (e.g. 2-point func-
tions for mass correction).

Cons:
Signal is typically O(αem).
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I am going to talk about...

I things I have read about: Quick review of recent activity and results

I things I have worked on: Charged states in a finite box: discussion of proposed
methods

I things I know nothing about, but I find interesting: Decay rates, IR divergences
and potentially large logarithms



Part I – Things I have read about

Quick review of recent activity and results
except RM123-SOTON decay rate calculation



BMW: Baryon masses
Borsanyi et al., Science 347 (2015) 1452-1455

Talk by Liu, Mon 10.30
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I Analytic understanding of power-law finite-volume corrections to masses of stable states, in
the fully-relativistic theory.

Fodor et al., Phys. Lett. B 755, 245 (2016)

Davoudi, Savage, Phys. Rev. D 90, no. 5, 054503 (2014)

I Large volume simulations: physical size up to MπL = 8.1 with a 64× 803 lattice.



QCD-SF: Masses
R. Horsley et al., arXiv:1508.06401

R. Horsley et al., JHEP 1604, 093 (2016)
Talk by Rakow, Wed 9.20
Talk by Young, Wed 9.40

Talk by Liu, Mon 10.30
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I Taylor expand masses around the SU(3) symmetric point and αEM = 0, neglecting O(e4) and

O(δm2). Move away from the symmetric point by keeping δmu + δmd + δms = 0.



RBC/UKQCD: HVP contribution to gµ − 2
Talk by Harrison, Tue 15.00
Talk by Gülpers, Tue 15.20

I Exploratory study to calculate isospin corrections to the HVP contribution to gµ − 2.

I Electroquenched approximation (i.e. gauge configurations are generated with αEM = 0) +
QEDL.

I Comparision between stochastic QED (valence Dirac operator = QCD+QED Dirac operator,
with free EM field), and RM123 method (observables are expanded in αEM by hand).

Hadronic Vacuum Polarisation

Preliminary upper bound on aHad,LO
µ isospin-breaking effects:

∼ 0.5% at 1σ. 14/17



BMW: Up and down quark masses
Fodor et al., arXiv:1604.07112 [hep-lat]

Talk by Varnhost, Tue 15.20

I Violation to Daschen’s theorem.

I Ratio of up and down quark masses. Claim: mu/δmu ∼ 24.

I Electroquenched (with some estimate for systematic error) + QEDTL (with correction for
masses)

Results

Results

We use �M2 = 2B2�m +
O(mud↵, mud�m, ↵2, ↵�m, �m2)
with B2 from [1] to get

�m =
�M

2B2
= �2.41(6)(4)(9) MeV

Using mud from [2] we arrive at

Light quark mass ratio

mu

md
= 0.485(11)(8)(14)

0.3 0.4 0.5 0.6 0.7 0.8
mu/md

Duncan et. al. (1969)

MILC (2004)

RBC-UKQCD (2007)

MILC (2009)

RBC-UKQCD (2010)

BMW (2010)

Laiho et. al. (2011)

PACS-CS (2012)

RM123 (2013)

QCDSF (2015)

MILC (2016), preliminary

this work

PDG

FLAG em. err.

FLAG lat. err.

red: statistical error
blue: systematic error
green: systematic error without quenching

[1] S. Durr, Z. Fodor, C. Hoelbling, S. Krieg, T. Kurth, L. Lellouch, T. Lippert, R. Malak, T. Metivet, A. Portelli, A. Sastre, and K. K.

Szabo (BMW Collaboration), Phys. Rev. D90, 114504 (2014), arXiv:1310.3626 [hep-lat].

[2] S. Durr, Z. Fodor, C. Hoelbling, S. Katz, S. Krieg, et al. (BMW Collaboration), Phys.Lett. B701, 265 (2011), arXiv:1011.2403

[hep-lat].

Lukas Varnhorst for BMW collaboration Corrections to Dashen’s theorem 13 von 15



Part II – Things I have worked on

Charged states in a finite box: discussion of proposed methods



Charge states in a finite box

In a finite box with periodic boundary conditions, Gauss law forbids states with nonzero charge

Q =

∫
d

3x j0(t, x) =

∫
d

3x ∂kEk (t, x) = 0

Some proposed methods

I Remove the global zero-mode of the gauge field (QEDTL)

I Restrict the global zero-mode of the gauge field

I Remove the spatial zero-mode of the gauge field in each timeslice (QEDL)

I Massive photon.

I C? boundary conditions.

All these approaches are equivalent if the infinite-volume limit is take before any other limit
(large-t limit in 2-point functions, continuum limit, massless photon limit). In general the
infinite-volume limit does not commute with the other limits.



QEDTL: Gauss law and zero-modes
Duncan et al., Phys. Rev. Lett. 76, 3894 (1996)

Recipe: Remove the global zero-mode of the gauge field

aµ = eLµ

∫
d

4x Aµ(x) = 0

Action

S( 1
eL a + B) = S(B) +

i

Lµ
aµ

∫
d4x jµ(x)

Integration over the zero-modes yields a delta function∫
da e−S(a,B) = e−S(0,B)

∏
µ

δ

(
1

Lµ

∫
d4x jµ(x)

)
Configurations in which a charged state is created in be-
tween two interpolating operators are excluded by the delta
function.

φ†

φ

0 L

t1

t2

T

Q = 0

Q = 1

Q = 0

1

T

∫
d4x j0(x) =

t2 − t1

T

No transfer matrix (i.e. Hamiltonian) [Borsanyi et al., Science 347 (2015) 1452-1455]. In particular the
two-point function does not have a spectral decomposition:∫

d
3x 〈ψ(t, x)ψ̄(0)〉 6=

∑
n,m

Anm(L)e−t[En(L)−Em(L)]e−TEm(L)

Infinite-volume limit should be taken before fitting plateaux in effective masses and the continuum
limit.
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Restriction of zero-modes
Gockeler et al., Nucl. Phys. B 334, 527 (1990)

Recipe: Restrict the global zero-mode of the gauge field

−π < aµ = eLµ

∫
d

4x Aµ(x) < π

The restriction can be seen as a nonlocal gauge fixing (for large gauge transformations).

A transfer matrix interpretation of the two-point function is not possible, and the decomposition in
exponentials is not guaranteed. Infinite-volume limit should be taken before fitting plateaux in
effective masses and the continuum limit.



QEDL: spatial zero-modes
Hayakawa and Uno, Prog. Theor. Phys. 120, 413 (2008)

Borsanyi et al., Science 347 (2015) 1452-1455

Recipe: Remove the spatial zero-mode of the gauge field in each timeslice∫
d

3x Aµ(t, x) = 0

QEDL has a transfer matrix. It is a nonlocal prescription. Locality is a core property of QFT, it is
a fundamental assumption behind

I Renormalizability by power counting
I Volume-independence of renormalization constants
I Operator product expansion
I Effective-theory description of long-distance physics
I Symanzik improvement program
I ...

Infinite-volume limit should be taken before the continuum limit.

What is the status on these issues?

I Operators with dimension ≤ 4 are renormalized at O(α) by the infinite-volume counterterms.
I Non-relativistic EFT description breaks down at O(α), as antiparticles do not decouple in the

NR limit. [Fodor et al., Phys. Lett. B 755, 245 (2016)]

I Higher dimensional operators generate nonlocal divergences.
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UV cutoff and subtraction of spatial zero-modes

Simpler case: λφ4 scalar theory, with the constraint∫
d

3x φ(t, x) = 0

I Explicit calculation in heat-kernel regularization with cutoff Λ yields

(�φ)2(x) =
∑
dO≤6

Λ6−dO cO [O(x)]R −
λ

4(2π)1/2

Λ

L6

∫
d

3z [φ2(x0, z)]R + O(λ2)

I It it impossible to define [(�φ)2(x)]R, i.e. a local and finite operator that coincides with

(�φ)2(x) at tree level.

I In the (would-be) Symanzik expansion of observables there are terms proportional to aL−3.

Λ−2
∫

d
4x (�φ)2(x) = −

λ

4(2π)1/2

1

ΛL3

∫
d

4x [φ2(x)]R + local contr.s + O(λ2)

I Once locality is violated, there is a number of unexpected and counterintuitive phenomena
happening. A systematic analysis of the effects of the non-locality of QEDL is desirable,
expecially in view of calculations of more complex observables than masses.
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I In the (would-be) Symanzik expansion of observables there are terms proportional to aL−3.

Λ−2
∫

d
4x (�φ)2(x) = −

λ

4(2π)1/2

1

ΛL3

∫
d

4x [φ2(x)]R + local contr.s + O(λ2)

I Once locality is violated, there is a number of unexpected and counterintuitive phenomena
happening. A systematic analysis of the effects of the non-locality of QEDL is desirable,
expecially in view of calculations of more complex observables than masses.



Massive photon
Endres et al., arXiv:1507.08916

Recipe: Landau gauge + mass term for photon.

Local prescription. Gauge invariance is broken in a controlled way (soflty broken). Continuum limit
can be consistently take before infinite-volume limit and mγ → 0 limit. Infinite-volume limit must
be taken before the mγ → 0 limit.

Integration over the zero-modes∫
da e−S(a,B) ∝ e−S(0,B) exp

− e2

2m2
γTL

3

∑
µ

(∫
d4x jµ(x)

)2


Competing effect

I The mγ → 0 limit suppresses charged states.
I The T , L→∞ limit allows charged states.
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Competing effect

I The mγ → 0 limit suppresses charged states.
I The T , L→∞ limit allows charged states.

In particular

lim
mγ→0

〈ψ(x)ψ̄(0)〉 = 0 + contact terms



Massive photon
Endres et al., arXiv:1507.08916

Recipe: Landau gauge + mass term for photon.

Local prescription. Gauge invariance is broken in a controlled way (soflty broken). Continuum limit
can be consistently take before infinite-volume limit and mγ → 0 limit. Infinite-volume limit must
be taken before the mγ → 0 limit.

Integration over the zero-modes∫
da e−S(a,B) ∝ e−S(0,B) exp

− e2

2m2
γTL

3

∑
µ

(∫
d4x jµ(x)

)2


Competing effect

I The mγ → 0 limit suppresses charged states.
I The T , L→∞ limit allows charged states.

A bit more in detail∫
d

3z e−ipx〈ψ(x)ψ̄(0)〉 '
m3
γ(2πTL3)3/2

e3〈δQ〉0
e
− e2

2m2
γV

x2
0
〈δQ(T ),0ψ(x0, 0)ψ̄(0)〉0

where 〈·〉0 is the expectation value in QEDTL. Notice that at LO the expectation value does not
depend on p!



C? boundary conditions
Wiese, Nucl. Phys. B 375, 45 (1992)

Polley, Z. Phys. C 59, 105 (1993)
Kronfeld and Wiese, Nucl. Phys. B 357, 521 (1991)

Lucini et al., JHEP 1602, 076 (2016)

Recipe: Use C? boundary conditions along spatial
directions for all fields

Aµ(x + Lk) = −A∗µ(x)

ψ(x + Lk) = C−1
ψ̄

T (x)

The flux of electric fiels across the boundaries in
not forced to vanish

Q(t) =

∫
d

3x j0(t, x) =

∫
d

3x ∂kEk (t, x) 6= 0

Local prescription. Gauge invariance is preserved. Continuum limit can be consistently take before
infinite-volume limit. Flavour and charge conservation are partially violated.

I This generates unphysical decay of a few hadrons, but most of them are protected. In
n-point functions involving the non-protected hadrons, infinite-volume limit must be taken
before the large-t limit.

I Non-physical decay is exponentially suppressed with the volume.
I Flavour symmetry is broken only by boundary effects. Composite operators renormalize as if

flavour symmetry were intact.
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Message

I Gauss law forbids non-zero charge states in a finite box with periodic boundary conditions.

I Several proposal to work around this problem involve tampering with (global or spatial) zero
modes of the gauge fields.

I The implications of non locality are not systematically understood. This might be an issue,
expecially for simulations at unphysically large values of αEM, and for complex observables.

I In view of a target precision of 1%, it would be safer to use setups that are theoretically
under control.



Part III – Things I know nothing about, but I find interesting

Decay rates, IR divergences and potentially large logarithms
Bonus: quick review of RM123-SOTON decay rate calculation



RM123-SOTON: Pion and kaon leptonic decay rate
Carrasco et al., Phys.Rev. D91 (2015) 7, 074506

Talk by Tantalo, Wed 10.50
Talk by Simula, Tue 11.10

I The decay amplitude π → `ν̄ is infinite at order αEM because of IR divergences.

I [Bloch and Nordsieck, Phys. Rev. 52, 54 (1937)] The physical quantity is the decay rate of π → `ν̄
plus an arbitrary number of undetected soft photons (i.e. photons with energy lower than the
detector resolution ∆E) in the final states. At order αEM only one photon matters.

I The proposed method uses in a smart way the decomposition of decay amplitudes in a
perturbative universal part and a non-universal structure-dependent part.



RM123-SOTON: Pion and kaon leptonic decay rate
Carrasco et al., Phys.Rev. D91 (2015) 7, 074506

Talk by Tantalo, Wed 10.50
Talk by Simula, Tue 11.10

Calculation of Γ(∆E) with ∆E ∼ 30MeV. Crucial ingredients:

I Finite volume regulates the IR divergences.
I Full calculation of the finite structure-dependent part of π → `ν̄.
I The structure-dependent part of π → `ν̄γ is shown to be negligible.
I The universal part of π → `ν̄ is calculated analytically in a 1/L expansion plus ln L. Finite

volume corrections to the structure-dependent part vanish like 1/L2.
I Exploratory electroquenced + QEDL.

preli
minary

* chiral extrapolation [Knecht et al., EPJC 12 (2000) 469]

Rπ ΔEγ
max( ) = 1+α em 4πE µ( )+ 3

4π
log ξ

µ2

⎛
⎝⎜

⎞
⎠⎟
+ A1ξ + Da

2 +δΓ pt ΔEγ
max( ) + Kπ

FSE L( )⎧
⎨
⎩

⎫
⎬
⎭

ξ ≡ Mπ
2

4π f0( )2

 
Kπ

FSE L( ) = K2

MπL( )2
+

K
2



EL( )2residual (structure-dependent) FSEs:  E, A1, D, K2, K
2

 :  5 free parameters

open markers: lattice data with subtraction of 
                        universal FSEs up to 1/L

full markers: lattice data with subtraction of both 
                      universal and structure-dependent
                      FSEs

Rπ
phys ΔEγ

max( ) = 1.0210 (8)stat+ fit (11)chiral (6)FSE (2)a2 ...( )qQED
= 1.0210 (8)stat+ fit (13)syst ...( )qQED = 1.0210 (15) ...( )qQED

Rπ
phys ΔEγ

max( )
Rπ
PDG ΔEγ

max( ) = 1.0033 (26) ...( )qQED

ΔEγ
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π + → µ+ν γ[ ]
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A textbook story...

IR divergences cancel in physical observables. Large logarithms may appear in physical observables
as remnants of IR divergences. As a consequence a reliable estimate of the radiative corrections is
problematic. In the last part of my talk I want to argue that these logs may be unespectedly large.

I Cancellation of IR divergences in inclusive decay rates and cross sections.

Bloch and Nordsieck, Phys. Rev. 52, 54 (1937)

I Factorisation, exponentiation and cancellation of IR divergences. Universality.

Yennie, Frautschi and Suura, Annals Phys. 13, 379 (1961)
Weinberg, Phys. Rev. 140, B516 (1965)
Grammer and Yennie, Phys. Rev. D 8, 4332 (1973)

I IR divergences as a failure of perturbation theory for transition amplitudes.

Lee and Nauenberg, Phys. Rev. 133, B1549 (1964)

I More on universality.

Low, Phys. Rev. 96, 1428 (1954)
Gell-Mann and Goldbarger, Phys. Rev. 96, 1433 (1954)

I Estimate radiative corrections by separating universal and structure-dependent parts.

Sirlin, Rev. Mod. Phys. 50, 573 (1978)

I IR divergences as failure of standard (Haag and Ruelle) scattering theory.

Kulish and Faddeev, Theor. Math. Phys. 4, 745 (1970)
Immense work of Buchholz, Jackiw, Zwanziger...



Soft divergences at LO

• Photon propagator k−2 is not enough to generate IR divergences.

• Euclidean n-point functions are IR finite. Soft divergences when matter propagators go on shell

p̄2 = −M2 ⇒
1

(p̄ + k)2 + M2
=

1

2p̄k + k2
'

1

2p̄k

Self energy

Σ(p̄) ∼
∫

d4k

(2π)4

1

k2

1

2p̄k
= IR finite

p p + k

k

Scattering amplitude

A(p̄, p̄′) ∼
∫

d4k

(2π)4

1

k2

1

2p̄k

1

2p̄′k
= IR divergent

p

p′

k

Wave function normalization:

∂Σ

∂p
(p̄) ∼

∫
d4k

(2π)4

1

k2

(
1

2p̄k

)2

= IR divergent

p

k

• At higher order the analysis is complicated by nested divergences.
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Universality of soft divergences at LO

Soft logarithms involving hadrons are the same one would calculate in an effective theory in which
hadrons are treated as point-like particles.

Effective theory:

π

Lh

`

ν̄L`

A ∝
∫
k

Fπ(p̄π+k)µ
1

k2
(−2p̄π−k)ρ

1

2p̄πk + k2
γµ
−i(6 p̄`−6 k) + m`

−2p̄`k + k2
γρ

Full theory:

I Effective (1PI) vertices, dressed propagators.
I Effective (1PI) vertices are analytic around k = 0.
I Residues are analytic around the mass-shell.
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[A]IR div. ∝ ΓπL
µ (p̄π)

∫
k

Zγ(0)

k2
Γπγπ̄ρ (p̄π, 0)

Zπ(p̄π)

2p̄πk
γµ
−i6 p̄` + m`

−2p̄`k
γρ

By definition ΓπL
µ (p̄π) ≡ Fπ p̄

µ
π

Canonical normalization Zγ(0) = Zπ(p̄π) = 1

Ward identity kρΓπγπ̄ρ (p̄π, k) = ∆−1(p̄)−∆−1(p̄ + k) = −2p̄k + O(k2)

⇒ Γπγπ̄ρ (p̄π, k) = −2p̄ρ + O(k)
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Factorisation of soft divergences at LO

Introduce an IR regulator µ that preserves unitarity, e.g. photon mass (µ = mγ).

π

`

ν̄
=

π

`

ν̄

k < Λ

+
π

`

ν̄

k > Λ

=

= αEMB(p̄π, p̄`) ln
mγ

Λ
×
[
π

`

ν̄

]
+

π

`

ν̄

k > Λ

ANLO(α→ β; mγ) =

[
1 +

αEM

2
R(α→ β) ln

mγ

Λ

]
× ALO(α→ β) + ANLO,k2>Λ2 (α→ β)

1-loop amplitude
with mγ > 0

universal (known)
function

tree-level
amplitude

with mγ = 0 1-loop amplitude
with mγ = 0

and k2 > Λ2

restriction



Bloch-Nordsieck prescription

Physics interpretation: from the experimental point of view it is impossible to differentiate between

h → ` + ν̄ ,

h → ` + ν̄ + Nγ ,

• if each photon is emitted with a lower energy than the detector resolution ∆E ;

• and the total energy carryed away by the undetected photons is (roughly) less than the
resolution ∆E with which we can reconstruct the lepton energy.

The physical quantity is the decay rate integrated over soft photons, which is finite.1

Γ(∆E) = lim
mγ→0

1

2mπ

∞∑
N=0

1

N!

∫
kα<∆E∑
α kα<∆E

dΦNγ |〈π|HW|`, ν̄,Nγ〉|2 =

=
1

2mπ

∣∣∣∣∣∣ π `
ν̄

+ π `

ν̄

∣∣∣∣∣∣
2

+
1

2mπ

∫
1γ

∣∣∣∣∣∣ π `

ν̄

+ π `

ν̄

∣∣∣∣∣∣
2

The logarithm in the photon mass is traded for a logarithm in the energy resolution:

〈π|HW|`, ν̄〉 =

[
1 +

αEM

2
R ln

mγ

Λ

]
ALO + ANLO,k2>Λ2 + O(α2

EM)

⇒ Γ(∆E) =

[
1 + αEM Re R ln

∆E

Λ

]
ΓLO + ΓNLO,k2>Λ2 + O(α2

EM)

1The diagrammatic expansion is wrong. I am deliberately neglecting the wave-function renormalization for sake of presentation.
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resolution ∆E with which we can reconstruct the lepton energy.

The physical quantity is the decay rate integrated over soft photons, which is finite.1
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The logarithm in the photon mass is traded for a logarithm in the energy resolution:
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1The diagrammatic expansion is wrong. I am deliberately neglecting the wave-function renormalization for sake of presentation.
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Large collinear logarithms

We consider the (phenomenologically irrelevant) decay process

B− → e− + ν̄e
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Back of the envelope calculation
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This hard collinear logarithm is not universal, it reads the structure of the B meson and has to be
calculated nonperturbatively!
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Conclusions

I When aiming at the percent precision, isospin breaking corrections must be included.

I Activity in this direction has been growing significantly in the past few years.

I QED and QCD are very different theories. Inclusion of QED effects implies a shift in the
standard paradigm of lattice simulations.

I Description of charged states in a finite box is somewhat challenging. Effects of nonlocality
are not systematically understood. I advocate the use of setups that are theoretically under
control.

I Numerical calculations of masses are already at an advanced stage from the technical point
of view. The challenge ahead is the full calculation of radiative corrections to decay rates.

I (Almost) IR divergences may generate large logarithms in heavy meson decay rates.
Potentially lattice QCD can have a big impact there.

Thank you!


