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Péter Hasenfratz

Budapest, Sept. 22, 1946 — Bern, April 9, 2016




Péter was a very gentle and extremely modest person
He had a very generous personality

“If I would not know Péter’s profession, | would have guessed he
must be a pediatrician.”
quote from a friend

“If | would not have become a scientist, | would be a poet.”
quote from Péter

He would tolerate only the highest scientific standards

We are sad to have lost an extraordinary person and scientist




Péter's CV

B.Sc. in Physics, 1971, Eotvos University, Budapest
Ph.D. in Physics, 1973, Eotvos University, Budapest

1973 - 1975 Member of the Central Research Institute for
Physics, Budapest

1975 - 1976 Postdoc with Gerard 't Hooft, Utrecht
1977 - 1979 Return to CRIP, Budapest

1979 - 1980 Postdoc at CERN

1981 - 1984 Staff member Theory Division at CERN

1984 - 1991 Associate professor at the University of Bern

1991 - 2011 Full professor at the University of Bern




Péter's scientific contributions

Over 125 publications:
» many of them plenary talks, review articles and lecture notes

Excellent academic teacher, also at numerous international schools

Advisor to 14 Ph.D. students

He initiated the first lattice conference at CERN in 1982:
» handwritten personal invitations
> the seed for a new scientific community
» 33 conferences so far, 420 participants today




Péter's scientific contributions

Ability to analytically calculate seemingly uncalculable things:
> the scale parameter of QCD on the lattice /\'(3tctD

> exact mass gaps in several 2-dim. asymptotically free QFTs

Very creative and original thinker, numerous seminal contributions
to lattice QFT:

» FP actions, index theorem

» understanding of chiral symmetry

» chemical potential

> ..




Other major research topics

quark bag model
topological excitations

spin models

hopping expansion

higgs physics (upper bound,
top quark condensate, ...)

finite size effects from Goldstone
bosons

finite temperature phase transition
in QCD







Overview

The connection between the lattice and the continuum

The mass gaps

The renormalization group and FP actions



Quotes from a 1981 review paper

" MC simulations did not help us to obtain a better physical
understanding, a deeper insight into the theory."

"Is g small enough? [...] there is reason to worry: the approach
to asymptotic scaling might be very slow.”

" In spite of the intense work, there is no real progress one can
report on.”

" The whole program is faced with unexpected and unpleasant
difficulties at this moment."

" Clarification is needed.”
" One should consider these numbers with some reservations.”

"[...] although it is not clear whether every part of the calculation
is under control.”



Quotes from a 1982 review paper

"[...] the reliability of this procedure is really questionable.”

" | sense a big change concerning the expectations of the physics
community. Actually | believe this change is too big.

" Please, have your own healthy doubts |[...]. Solving QCD is not
so easy.

"[..] admit clearly the defects of our methods and make serious
efforts to improve them. This path is less spectacular, but,
perhaps, worth following.”



The connection between the lattice and the continuum

» lattice QCD contains only the dimensionless coupling g and
implicitly the lattice spacing a as parameters

» for a physical mass m or a length £ one has
1
m=1f(g)-- £=h(g)-a

» continuum limit reached when 1/m or £ > a:

» system approaches continuous PT (statistical physics)
> in asymptotically free theories: a — 0 for g — 0

» physical quantities should become independent of a in the
continuum limit:
d

am= 0 (a—0) = renormalizability



The connection between the lattice and the continuum

» this yields a differential equation for f(g):

~#e)+ 716 (35 ) =0
where

_.d 3 5
ﬁ(g)zadag— bog®> — b1g” — ...

> every physical quantity can be expressed in terms of a single,
RG-invariant mass parameter APt e.g. m = ¢, - A2t

1 _ 2
Alatt _ : e 1/2008" (pyg2) P2 11 4 0(g2)]

> analogously in a continuum ren. scheme one has

—b1 /22

A = M e 1/2os(M (pog(M)?) [+ O(g(M)?)]



The connection between the lattice and the continuum

> to set the scale (and to make sense), better connect the two

» in 1980 Peter and Anna Hasenfratz obtained this connection:

AMOM g3 5 A1t S((3)

Feynman gauge

= 575N\ SU(2)

long 1-loop lattice PT calculation of 2- and 3-point functions
explicit demonstration that there are no unwanted divergences
all non-covariant terms cancel

first to get it correct

vV vy VvVvYy

> it took 15 more years until the 2-loop calculation [Lischer, weisz '95)



The connection between the lattice and the continuum

» of course, the A parameter is nonperturbatively defined:

_ 2
AN=M e—1/2b0g(M)2 (bog(M)z) by /2b;

X

1+ O(g(M)Q)]

> lattice QCD is the ideal method to relate it nonperturbatively
to the low-energy properties of QCD



The connection between the lattice and the continuum

» of course, the A parameter is nonperturbatively defined:

A= M e—1/2bog(M)? (bog(M)Z)*bl/ﬂ’g

y /g(M)d 1 N 1 by
P Jo x B(x)  box® b3x

> lattice QCD is the ideal method to relate it nonperturbatively
to the low-energy properties of QCD



The connection between the lattice and the continuum

» A parameter in the MS-scheme in units of r:
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The connection between the lattice and the continuum

» of course, the A parameter is nonperturbatively defined:

-~ 2
A= Me—l/Zbgg(M)2 (bog(M)2) by /2b;

y /g(/‘/’)d 1 N 1 by
&P Jo ” B(x) = box3  bix

> lattice QCD is the ideal method to relate it nonperturbatively
to the low-energy properties of QCD
> closely related is the running coupling as at scale M

» measure a short distance quantity Q at scale M and match
with perturbative expansion

QM) = crags(M) + cags(M)? + ...



The connection between the lattice and the continuum

s &
¥ S ¢
Fisd
FiEs
F §F & F

Collaboration Ref. N; T & T M) Method Table

HPQCD 14A 127 24141 A O X O 0.11822(74) current, two points 45

ETM 13D [121] 24141 A O O ® 0.1196(4)(8)(16) gluon-ghost vertex 16

ETM 12C [122] 24141 A = 0.1200(14) gluon-ghost vertex 16

ETM 11D [123] 2+1+1 A © m O 0.1198(9)(5)(9)  ghion-ghost vertex 46

Bazavov 11 10]  2+1 A * 0.1166(*1%) Q-Q potential 12
Bazavov 12 70]  2+1 A 0 3 Q-Q potential 42
HPQCD 10 91] 241 A O kO 0.183(7) current, two points 15
HPQCD 10 01]  2+1 A O kK 0.1184(6) Wilson loops 11
JLQCD 10 79] 241 A = = o= (. vacuum polarization 13
PACS-CS 09A 53] 241 Ak kO 0I8@)* Schridinger functional 41

Maltman 08 02 241 A O O K 01192011) Wilson loops 44
HPQCD 08B 99]  2+1 A W m m 01174(12) current two points 15
HPQCD 08A [83] 241 A O ko ko 0.1183(8) ‘Wilson loops 44
HPQCD 05A 82 241 A 0 O O 017012 Wilson loops 44
QCDSF/UKQCD 05 [93] 0,23 A * ® % 0.112(1)(2) Wilson loops 11
Boucaud 01B [ 253 A O O ®m 013(3)4) gluon-ghost vertex 16
SESAM 99 ] 0,2-3 A < m m 0111817) Wilson loops 1
Wingate 95 o] 0,23 A Kk = m  0.107(5) Wilson loops. 44
Davies 94 88 023 A Kk m m 0115(2) Wilson loops 44
Aoki 91 87 2-3 A < = m 0108(5)(1) Wilson loops a1
El-Khadra 92 86] 0—=3 A Kk om0 0.106(4) Wilson loops 44

7 Result with a linear continuum extrapolation in a.

> critical assessment of the situation is necessary

» dominant source of uncertainty from discretization errors and
truncation of continuum/lattice PT



The connection between the lattice and the

FIAG2016 s
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is necessary

» dominant source of uncertainty from discretization errors and
truncation of continuum/lattice PT



The connection between the lattice and the continuum

» FLAG 16 estimate yields [arxiv:1607.00200]
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The connection between the lattice and the continuum
Critical assessment and summary table by FLAG 16:

s 3
S &
3§
Collaboration Ref. Ny ayrs(Mz) Method Table
HPQCD 14A [12] 24141 A O K& O 0.11822(74) current two points 45
ETM 13D [121] 24141 A O O ® 0.1196(4)(8)(16) gluon-ghost vertex 16
ETM 12C [122] 24141 A O O ® 0.1200(14) gluon-ghost vertex 16
ETM 11D [123] 24141 A O O ®  0.1198(9)(5)(*2) gluon-ghost vertex 16
Bazavov 14 [10]  2+1 A O Kk O 01166(F?) Q-Q potential 42
Bazavov 12 [70] 241 A O O O 01156(12) Q-Q potential 42
HPQCD 10 [o1] 241 A O K& O 01183(7) current two points 15
HPQCD 10 1] 241 A O Kk 0.1184(6) Wilson loops 4
JLQCD 10 [79] 241 A m ®m ® 011183)(*1)  vacuum polarization 13
PACS-CS 09A [53] 241 A Kk Kk O 01183)* Schrédinger functional 41
Maltman 08 92 241 A O O K 01192(11) Wilson loops 14
HPQCD 08B [09] 241 A m = om 01174(12) current two points 15
HPQCD 08A [83] 241 A K Kk 0.1183(8) Wilson loops 4
HPQCD 05A [82] 241 A O O O 01170(12) Wilson loops 4
QCDSF/UKQCD 05 [93] 0,23 A * = % 0.112(1)(2) Wilson loops 14
Boucaud 01B [16] 23 A O O m 0113(3)4) gluon-ghost vertex 16
SESAM 99 89 0,23 A K« = ®m 01118(17) Wilson loops 4
Wingate 95 00] 0,23 A K« = ®m 0107(5 Wilson loops 4
Davies 94 B8] 0,23 A K* = m 0115(2) Wilson loops 14
Aoki 94 87] 253 A K = ®m 0108(5)4) Wilson loops 44
El-Khadra 92 86 0—3 A K& = O 0.106(4) Wilson loops 44

# Result with a linear continuum extrapolation in a.



The connection between the lattice and the continuum
Critical assessment and summary table by Peter in 1981:

Gauge group Virtual Lattice size ~ computer
Reference fersion g:;;: The scope of the investigation time in
formilation | (188 | o, or iverations ¢ hours
SU(2) subgroup 8%+ 8216 <2, £ 5 RG. 10
m Kogut-Susskind ua & confa. BamRgn, 6 * 2.2 fixed
S0(2) subgroup 124 K t8%),a(e%)
12) wo e - 100
Wilson 8 confs, B = 2.05,2.25,2,44
sB(3) & - 6210 W, £ RG.
m wilson Ho 15 confs./K val. | Mesons and baryons Wwith u and d quarks - 100
y
1/7g% = 1.0 fixed
SU{2) subgroup Bi.32 oF mesons T ywixa¥!
14) Hogut-sSussiind Ko 8 confa. B = 2.7 fixed -
The First Hopping =xpi: =* | Vector and ES mesens of u, d, § and € quarks
Ref: in su(3) s M 8 ouark masses, K (a%), algh) -5
8 Wilson 15-20 confs, /g val.| 1/g? = 0.6,0.7,0.9,0.525,0.95,1.0
su(3) 5¥x10 1/g% = 1.0 fixed
15 Wilson fo 38 confs./K val. | mesons and baryons ; quark masses i
The second = Baryon masses 1/g = 0.0,0.4,0.7,0.925
Ref. in SUes) o Me: 8 Prolininary resulis on the F wave mesens -10
8) Wilsen 310 confs./g val.| created by point-splitted cperators

- Table 2 =



The connection between the lattice and the continuum

Critical assessment and summary table by Peter in 1981:

]
Reference 13) 8) 15) 8)
PS and vector m, = B00£100 MeV = 950 MeV n, = 95050 Mel
i meson masses gy = 860 Me¥ My = BIOLTO Me¥
. the p wave meson poles
m = 1000+100 v
P wave meson | m e no sensible results | no sensible results ond Be identifoed
nasses MA, = 1200£100 MeV with local operators with lecal operators by using spatially
extended operators
Baryon masses | my = 9508100 teV g = 1270440 teV essentially the strong
my = 13004100 Me¥ my = 13704600 MeV coupling spectrum
Ouark masses | m = 4 MeV Tag = Te5 e g = 5+9:0.8 HeV
lns = 190 MeV ng = 150£10 Me¥
m = 1600 MeV

- Table 3 -




The connection between the lattice and the continuum

Critical assessment and summary table by Peter in 1981:

Reference 13) &) 135) 8)
PS and vector IVIp = B00£100 MeV mﬁ, = 950 MeV mm = 950£50 MeV
j meson nasses [ Mgy = BGOLTO MoV
the p wave meson poles
i = 10C0#100 Me¥
? wave meson | mg MeV | mo sensible results | no sensibvle results | ‘oo B ave Meson ot
masses MA! = 1200£100 MeV with local operators with local operators by using spatially
extended operators
Baryon masses | m, = 9508100 Mev m = 12708440 eV essentially the strong
my = 13006100 MeV my = 13704600 HeV coupling spectrum
tuarlc masses f oo, 4= e Bg = 145 MY My * 5:9:0.8 teV
mS = 190 MeV g = 150£10 MeV
NC = 1600 MeV
- Table 3 -

" We are able to obtain non-perturbative numbers in a four-dimensional,
relativistic, relevant theory. We are proud of it."




The mass gaps

» The determination of the mass-coupling relation belongs to
the most difficult problems in a QFT:

» relation between renormalized couplings from the Lagrangian
to the physical masses o
» e.g. nucleon mass in the chiral limit of QCD in units of AMS

My = Cmy, - AMS

» difficulty lies in the fact that

» Lagrangian defined at short distances (UV-scale)
» masses are parameters at large distances (IR-scale)

> one family of models where this relation can be found exactly:
O(N) nonlinear sigma model in d =2

» asympt. free, with massive O(/N) isovector multiplets



The mass gaps

> in 1990 Peter (with M. Maggiore and F. Niedermayer)
calculated this relation exactly for N = 3 and 4:

m= 8. AVS N =3
e
2 _
M= ]2 A N =4
me

» in the same year, Peter (with F. Niedermayer) extended the
calculation to arbitrary N > 3:

g\ 1/(N-2) 1 -
"= () JESVCEr R

> at the time, over 30 nonperturbative determinations differed wildly
from each other




The mass gaps

» rather involved calculation, based on a beautiful idea:

» introduce a chemical potential h coupled to a Noether charge
» observe that the change of free energy and h is RG invariant
» calculate the free energy in PT for h > m (asympt. freedom)

F(h) — £(0) = —(N — 2)”2 [m h

4r | eV?Nyg
1 h InIn(h/Nyg)

» calculate the free energy from the S-matrix:
f(h) —f(0 *f—/coshﬁe

» use generalised Wiener-Hopf technique to express integral
equation in terms of In h/m for h > m



The mass gaps

> application of the same idea yields the exact mass gap
> in the GN model [Forgécs, Niedermayer, Weisz '91]
> in the antiferromagnetic d = 2 4 1 Heisenberg model at low T

[P. Hasenfratz, Niedermayer '91; P. Hasenfratz cond-mat/9901355]

» another interesting application is for matching chiral
Lagrangians with different regularizations:
[Niedermayer, Weisz arXiv:1601.00614, arXiv:1602.03159]
» related to the QCD rotator in the §-regime where m,;Ls < 1
and FrLs > 1 [Leutwyler '87]
» provides promising new way to determine LECs
[P. Hasenfratz arXiv:0909:3419)
» finite box introduces an IR-cutoff, study FS scaling in the
chiral limit



The mass gaps

» xPT for massless 2-flavour QCD has SU(2) x SU(2) ~ O(4):

» for general O(N) spectrum is given by quantum mechanical
rotator [Leutwyler '87]

E(N=I(l+N=-2)/20  [=0,1,2,...

O = F2Lz moment of inertia

> NLO term Of eXpanSiOn in ]./(Fng) [P. Hasenfratz, Niedermayer '93]
» NNLO terms in DR scheme and on the lattice

[P. Hasenfratz '09 ; Niedermayer, Weiermann '10]

» change of free energy due to a chemical potential coupled to
Noether charge in O(N) nonlinear & model icdermayer, weisz '16]
» connects the two regularizations of the effective theory
» converts physical quantities on the lattice to those in DR
> in particular, it relates the mass gap on the lattice to DR



The renormalization group and FP actions

Peter had a deep appreciation and understanding of the Wilson RG
description:

> lattice gauge theory is just a statistical system

» critical limit corresponds to the continuum limit of the QFT

O] 1

} intermediate i T
strong coupling coupling weak coupling

Ly

—"
N

———
g is decreasing

» the lattice provides a full non-perturbative description



The renormalization group and FP actions

» continuum physics is recovered in the lattice system at long
distances (close to the phase transition):

> integrate out variables describing short distance lattice physics

» obtain effective action for the relevant, long distance variables
{K}})} Re, {Kff)} RG, . {K(gn)} Re,

» sequence of RG transformations might have a FP:

* RG *
{Ka} — {K(y}
> interested in FP where £ =

» for gauge theories RG transformations complicated due to
requirement of gauge invariance



The renormalization group and FP actions

» continuum physics is recovered in the lattice system at long
distances (close to the phase transition):

> integrate out variables describing short distance lattice physics

» obtain effective action for the relevant, long distance variables

{K(g)} RG, {K}P} R . {K((ym} RG,
K, G
5 " G

RT




The renormalization group and FP actions

> basic starting point in expecting renormalizability and
universality along the RT
G

K,

RT

Ky 9



The renormalization group and FP actions

> basic starting point in expecting renormalizability and
universality along the RT

K

Ky 9

» warning for investigations of BSM models with conformal FP:

» the IR FP is not perturbative
» perturbative intuition could be misleading

remember: the lattice provides a fully nonperturbative description



The renormalization group and FP actions

> basic starting point in expecting renormalizability and
universality along the RT

> already in 1983 Peter thought about 'RG improved’ actions:

G

RT

/

(o4 ?mproved action

standard action
g2



The renormalization group and FP actions

> basic starting point in expecting renormalizability and
universality along the RT

> and 10 years later Peter and Ferenc became more specific:

ST

RT

=/
/

1/8

> the path integral for RG transformations in AF theories is
reduced to classical saddle point equations



The renormalization group and FP actions
» the FP gauge action is defined by

Se V] = min [S¢"[U] + Te[V. U]

and the FP Dirac operator by
DFP[V]™! = R[V] + w[U] - DFP[U]7! - w[U]

RT

J/ _Zf FP action

/8

N3/
"

&)

» the action BSEP + 1) DFP4 is classically perfect



The renormalization group and FP actions

» the minimizing gauge field U(x, V) defines a FP field in the
continuum:
> all symmetries of the continuum are well defined
> representation of infinitesimal transformations on the lattice
V mMze
n

U(x, V) "R™ 0 pe(xe,v) ek

N

» possibility to define SUSY algebra on the lattice

» FP equations define a scheme to relate coarse and fine lattice
configurations:

> recent multiscale thermalization algorithm [Endres at al. arXiv:1510.04675]

O~0-B-E-E-E-E-E-E-E--
T O T
L T A SR R A
B o®m OB OB OF R OE ¥



The renormalization group and FP actions

Then, in 1997 Peter made a truly groundbreaking observation. ..



The renormalization group and FP actions




The renormalization group and FP actions

> in the summer of '97 Peter looked through a pile of old
preprints while travelling

> he realized that the FP Dirac operator DFP fulfills the
Ginsparg—WiISOn re|ati0n: [P. Hasenfratz hep-lat/9709110]

Dvs +vsD = DvsD

» obtained from RG transformations for free fermions
[Ginsparg, Wilson '82]
» avoids Nielsen-Ninomyia no-go theorem
» implies correct triangle anomaly on the lattice
> all the soft-pion theorems are expected to be valid

> no tuning, no mixing, no current renormalization on the lattice

[P. Hasenfratz hep-lat/9802007]



The renormalization group and FP actions

> this set off an avalanche of developments:

» citation history of GW paper

> by now the third most cited lattice paper (963 citations)



The renormalization group and FP actions

> this set off an avalanche of developments:

>

Index theorem in QCD on the lattice [p. Hasenfratz, Laliena, Niedermayer ‘98]
Overlap operator as a solution to GW  [Neuberger 98]

Exact chiral symmetry on the lattice [Lischer ‘9]

Abelian chiral gauge theories on the lattice [Liischer ‘98]

Axial anomaly and topology [Adams; Chiu; Kikukawa, Yamada; Liischer; . .. all ‘98]
Chiral Jacobian on the lattice [Fujikawa '98; Suzuki 98 |

Lattice supersymmetry [so, Ukita '98; |

» implications for phenomenological and theoretical applications
can hardly be overestimated

>

cf. parallel sessions "Weak decays and matrix elements”, " Chiral

noon

symmetry”, " Theoretical developments”, ...



The renormalization group and FP actions

» chiral symmetry regularized on the lattice provides a true
solution to a hierarchy problem

» often unappreciated outside the lattice community

» FP fermions and overlap/domain wall fermions stem from
completely different approaches

> is there a connection? how are they related?

» GW relation is a specific form of an algebraic Riccati equation
» sign function appears naturally in its solution

» the gauge field dependent chiral projectors Py = 1/2(1 + 4s)
with 45 = ~5(1 — D)
» are responsible for fermion number violation
> but break CP symmetry
» cf. David Kaplan's talk on Saturday



Looking forward to an exciting new lattice conference. . .

DL+ 1,D=DY,D




Looking forward to an exciting new lattice conference. ..

. D=DY.]

... would make Peter very happy!
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