
From spin models to lattice QCD –
The scientific legacy of Péter Hasenfratz
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Péter Hasenfratz

Budapest, Sept. 22, 1946 – Bern, April 9, 2016



Péter was a very gentle and extremely modest person

He had a very generous personality

“If I would not know Péter’s profession, I would have guessed he
must be a pediatrician.”

quote from a friend

“If I would not have become a scientist, I would be a poet.”
quote from Péter

He would tolerate only the highest scientific standards

We are sad to have lost an extraordinary person and scientist



Péter’s CV
• B.Sc. in Physics, 1971, Eötvös University, Budapest

• Ph.D. in Physics, 1973, Eötvös University, Budapest

• 1973 - 1975 Member of the Central Research Institute for
Physics, Budapest

• 1975 - 1976 Postdoc with Gerard ’t Hooft, Utrecht

• 1977 - 1979 Return to CRIP, Budapest

• 1979 - 1980 Postdoc at CERN

• 1981 - 1984 Staff member Theory Division at CERN

• 1984 - 1991 Associate professor at the University of Bern

• 1991 - 2011 Full professor at the University of Bern



Péter’s scientific contributions

Over 125 publications:

I many of them plenary talks, review articles and lecture notes

Excellent academic teacher, also at numerous international schools

Advisor to 14 Ph.D. students

He initiated the first lattice conference at CERN in 1982:

I handwritten personal invitations

I the seed for a new scientific community

I 33 conferences so far, 420 participants today



Péter’s scientific contributions

Ability to analytically calculate seemingly uncalculable things:

I the scale parameter of QCD on the lattice Λlatt
QCD

I exact mass gaps in several 2-dim. asymptotically free QFTs

Very creative and original thinker, numerous seminal contributions
to lattice QFT:

I FP actions, index theorem

I understanding of chiral symmetry

I chemical potential

I . . .



Other major research topics

I quark bag model

I topological excitations

I spin models

I hopping expansion

I higgs physics (upper bound,
top quark condensate, . . . )

I finite size effects from Goldstone
bosons

I finite temperature phase transition
in QCD





Overview

The connection between the lattice and the continuum

The mass gaps

The renormalization group and FP actions



Quotes from a 1981 review paper

”MC simulations did not help us to obtain a better physical
understanding, a deeper insight into the theory.”

”Is g small enough? [. . . ] there is reason to worry: the approach
to asymptotic scaling might be very slow.”

”In spite of the intense work, there is no real progress one can
report on.”

”The whole program is faced with unexpected and unpleasant
difficulties at this moment.”

”Clarification is needed.”

”One should consider these numbers with some reservations.”

”[. . . ] although it is not clear whether every part of the calculation
is under control.”



Quotes from a 1982 review paper

”[. . . ] the reliability of this procedure is really questionable.”

”I sense a big change concerning the expectations of the physics
community. Actually I believe this change is too big.

”Please, have your own healthy doubts [. . . ]. Solving QCD is not
so easy.

”[. . . ] admit clearly the defects of our methods and make serious
efforts to improve them. This path is less spectacular, but,
perhaps, worth following.”



The connection between the lattice and the continuum

I lattice QCD contains only the dimensionless coupling g and
implicitly the lattice spacing a as parameters

I for a physical mass m or a length ξ one has

m = f (g) · 1

a
ξ = h(g) · a

I continuum limit reached when 1/m or ξ � a:
I system approaches continuous PT (statistical physics)
I in asymptotically free theories: a→ 0 for g → 0

I physical quantities should become independent of a in the
continuum limit:

d

da
m = 0 (a→ 0) ⇐⇒ renormalizability



The connection between the lattice and the continuum

I this yields a differential equation for f (g):

−f (g) + f ′(g)

(
a
d

da
g

)
= 0

where

β(g) ≡ a
d

da
g = −b0g

3 − b1g
5 − . . .

I every physical quantity can be expressed in terms of a single,
RG-invariant mass parameter Λlatt, e.g. m = cm · Λlatt

Λlatt =
1

a
e−1/2b0g2 (

b0g
2
)−b1/2b2

0 · [1 +O(g2)]

I analogously in a continuum ren. scheme one has

Λ = M e−1/2b0g(M)2 (
b0g(M)2

)−b1/2b2
0 · [1 +O(g(M)2)]



The connection between the lattice and the continuum

I to set the scale (and to make sense), better connect the two

I in 1980 Peter and Anna Hasenfratz obtained this connection:

ΛMOM
Feynman gauge = 83.5 Λlatt SU(3)

= 57.5 Λlatt SU(2)

I long 1-loop lattice PT calculation of 2- and 3-point functions
I explicit demonstration that there are no unwanted divergences
I all non-covariant terms cancel
I first to get it correct

I it took 15 more years until the 2-loop calculation [Lüscher, Weisz ’95]



The connection between the lattice and the continuum
I of course, the Λ parameter is nonperturbatively defined:

Λ = M e−1/2b0g(M)2 (
b0g(M)2

)−b1/2b2
0

×

[
1 +O(g(M)2)

]

I lattice QCD is the ideal method to relate it nonperturbatively
to the low-energy properties of QCD

I closely related is the running coupling αs at scale M

αs(M) =
g2(M)

4π

I measure a short distance quantity Q at scale M and match
with perturbative expansion

Q(M) = c1αMS(M) + c2αMS(M)2 + . . .
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I Λ parameter in the MS-scheme in units of r0:
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truncation of continuum/lattice PT
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The connection between the lattice and the continuum

I FLAG 16 estimate yields [arXiv:1607.00299]

α
(5)

MS
(MZ ) = 0.1182(12)

I to be compared with PDG 16 values

α
(5)

MS
(MZ ) = 0.1175(17) (phen. only)

α
(5)

MS
(MZ ) = 0.1181(13)

I still room for systematic improvement
(smaller lattice spacing,. . . )

I in the long term, it pays off to be
conservative



The connection between the lattice and the continuum
Critical assessment and summary table by FLAG 16:



The connection between the lattice and the continuum
Critical assessment and summary table by Peter in 1981:



The connection between the lattice and the continuum
Critical assessment and summary table by Peter in 1981:



The connection between the lattice and the continuum
Critical assessment and summary table by Peter in 1981:

”We are able to obtain non-perturbative numbers in a four-dimensional,
relativistic, relevant theory. We are proud of it.”



The mass gaps

I The determination of the mass-coupling relation belongs to
the most difficult problems in a QFT:

I relation between renormalized couplings from the Lagrangian
to the physical masses

I e.g. nucleon mass in the chiral limit of QCD in units of ΛMS

mN = cmN
· ΛMS

I difficulty lies in the fact that
I Lagrangian defined at short distances (UV-scale)
I masses are parameters at large distances (IR-scale)

I one family of models where this relation can be found exactly:

O(N) nonlinear sigma model in d = 2

I asympt. free, with massive O(N) isovector multiplets



The mass gaps

I in 1990 Peter (with M. Maggiore and F. Niedermayer)
calculated this relation exactly for N = 3 and 4:

m =
8

e
· ΛMS N = 3

m =

√
32

πe
· ΛMS N = 4

I in the same year, Peter (with F. Niedermayer) extended the
calculation to arbitrary N ≥ 3:

m =

(
8

e

)1/(N−2) 1

Γ(1 + 1/(N − 2))
· ΛMS

I at the time, over 30 nonperturbative determinations differed wildly
from each other



The mass gaps

I rather involved calculation, based on a beautiful idea:

I introduce a chemical potential h coupled to a Noether charge
I observe that the change of free energy and h is RG invariant
I calculate the free energy in PT for h� m (asympt. freedom)

f (h)− f (0) = −(N − 2)
h2

4π

[
ln

h

e1/2ΛMS

+
1

N − 2
ln ln

h

ΛMS

+O
(

ln ln(h/ΛMS)

ln(h/ΛMS)

)]

I calculate the free energy from the S-matrix:

f (h)− f (0) = − m

2π

∫
cosh θ ε(θ)dθ

I use generalised Wiener-Hopf technique to express integral
equation in terms of ln h/m for h� m



The mass gaps

I application of the same idea yields the exact mass gap
I in the GN model [Forgács, Niedermayer, Weisz ’91]

I in the antiferromagnetic d = 2 + 1 Heisenberg model at low T
[P. Hasenfratz, Niedermayer ’91; P. Hasenfratz cond-mat/9901355]

I another interesting application is for matching chiral
Lagrangians with different regularizations:
[Niedermayer, Weisz arXiv:1601.00614, arXiv:1602.03159]

I related to the QCD rotator in the δ-regime where mπLs � 1
and FπLs � 1 [Leutwyler ’87]

I provides promising new way to determine LECs
[P. Hasenfratz arXiv:0909:3419]

I finite box introduces an IR-cutoff, study FS scaling in the
chiral limit



The mass gaps

I χPT for massless 2-flavour QCD has SU(2)× SU(2) ' O(4):
I for general O(N) spectrum is given by quantum mechanical

rotator [Leutwyler ’87]

E (l) = l(l + N − 2)/2Θ l = 0, 1, 2, . . .

Θ = F 2L3
s moment of inertia

I NLO term of expansion in 1/(F 2L2
s ) [P. Hasenfratz, Niedermayer ’93]

I NNLO terms in DR scheme and on the lattice
[P. Hasenfratz ’09 ; Niedermayer, Weiermann ’10]

I change of free energy due to a chemical potential coupled to
Noether charge in O(N) nonlinear σ model [Niedermayer, Weisz ’16]

I connects the two regularizations of the effective theory
I converts physical quantities on the lattice to those in DR
I in particular, it relates the mass gap on the lattice to DR



The renormalization group and FP actions

Peter had a deep appreciation and understanding of the Wilson RG
description:

I lattice gauge theory is just a statistical system

I critical limit corresponds to the continuum limit of the QFT

I the lattice provides a full non-perturbative description



The renormalization group and FP actions

I continuum physics is recovered in the lattice system at long
distances (close to the phase transition):

I integrate out variables describing short distance lattice physics

I obtain effective action for the relevant, long distance variables{
K (1)
α

}
RG−→

{
K (2)
α

}
RG−→ · · ·

{
K (n)
α

}
RG−→ · · ·

I sequence of RG transformations might have a FP:

{K∗α}
RG−→ {K∗α}

I interested in FP where ξ =∞
I for gauge theories RG transformations complicated due to

requirement of gauge invariance



The renormalization group and FP actions

I continuum physics is recovered in the lattice system at long
distances (close to the phase transition):

I integrate out variables describing short distance lattice physics

I obtain effective action for the relevant, long distance variables{
K (1)
α

}
RG−→

{
K (2)
α

}
RG−→ · · ·

{
K (n)
α

}
RG−→ · · ·



The renormalization group and FP actions

I basic starting point in expecting renormalizability and
universality along the RT



The renormalization group and FP actions

I basic starting point in expecting renormalizability and
universality along the RT

I warning for investigations of BSM models with conformal FP:
I the IR FP is not perturbative
I perturbative intuition could be misleading

remember: the lattice provides a fully nonperturbative description



The renormalization group and FP actions

I basic starting point in expecting renormalizability and
universality along the RT

I already in 1983 Peter thought about ’RG improved’ actions:



The renormalization group and FP actions

I basic starting point in expecting renormalizability and
universality along the RT

I and 10 years later Peter and Ferenc became more specific:

I the path integral for RG transformations in AF theories is
reduced to classical saddle point equations



The renormalization group and FP actions

I the FP gauge action is defined by

SFP
G [V ] = min

{U}

[
SFP
G [U] + TG [V ,U]

]
and the FP Dirac operator by

DFP[V ]−1 = R[V ] + ω[U] · DFP[U]−1 · ω[U]

I the action βSFP
G + ψDFPψ is classically perfect



The renormalization group and FP actions

I the minimizing gauge field U(x ,V ) defines a FP field in the
continuum:

I all symmetries of the continuum are well defined
I representation of infinitesimal transformations on the lattice

Vn
minimize−→ U(x ,V )

transform−→ Uε(xε,V )
block−→ V ε

n

I possibility to define SUSY algebra on the lattice

I FP equations define a scheme to relate coarse and fine lattice
configurations:

I recent multiscale thermalization algorithm [Endres at al. arXiv:1510.04675]



The renormalization group and FP actions

Then, in 1997 Peter made a truly groundbreaking observation. . .



The renormalization group and FP actions



The renormalization group and FP actions

I in the summer of ’97 Peter looked through a pile of old
preprints while travelling

I he realized that the FP Dirac operator DFP fulfills the
Ginsparg-Wilson relation: [P. Hasenfratz hep-lat/9709110]

Dγ5 + γ5D = Dγ5D

I obtained from RG transformations for free fermions
[Ginsparg, Wilson ’82]

I avoids Nielsen-Ninomyia no-go theorem
I implies correct triangle anomaly on the lattice
I all the soft-pion theorems are expected to be valid

I no tuning, no mixing, no current renormalization on the lattice
[P. Hasenfratz hep-lat/9802007]



The renormalization group and FP actions

I this set off an avalanche of developments:

I citation history of GW paper

I by now the third most cited lattice paper (963 citations)



The renormalization group and FP actions

I this set off an avalanche of developments:

I Index theorem in QCD on the lattice [P. Hasenfratz, Laliena, Niedermayer ’98]

I Overlap operator as a solution to GW [Neuberger ’98]

I Exact chiral symmetry on the lattice [Lüscher ’98]

I Abelian chiral gauge theories on the lattice [Lüscher ’98]

I Axial anomaly and topology [Adams; Chiu; Kikukawa, Yamada; Lüscher; . . . all ’98]

I Chiral Jacobian on the lattice [Fujikawa ’98; Suzuki ’98 ]

I Lattice supersymmetry [So, Ukita ’98; ]

I . . .

I implications for phenomenological and theoretical applications
can hardly be overestimated

I cf. parallel sessions ”Weak decays and matrix elements”, ”Chiral

symmetry”, ”Theoretical developments”, . . .



The renormalization group and FP actions

I chiral symmetry regularized on the lattice provides a true
solution to a hierarchy problem

I often unappreciated outside the lattice community

I FP fermions and overlap/domain wall fermions stem from
completely different approaches

I is there a connection? how are they related?

I GW relation is a specific form of an algebraic Riccati equation
I sign function appears naturally in its solution

I the gauge field dependent chiral projectors P̂± = 1/2(1± γ̂5)
with γ̂5 = γ5(1− D)

I are responsible for fermion number violation
I but break CP symmetry
I cf. David Kaplan’s talk on Saturday



Looking forward to an exciting new lattice conference. . .



Looking forward to an exciting new lattice conference. . .

. . . would make Peter very happy!
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