Hadron Matrix Elements and

 the Feynman-Hellman Theorem Lattice 2016: Southampton34th International Symposium onLattice Field Theory 24-30-July 2016

André Walker-Loud

1

Chris Bouchard
Chia Cheng (Jason) Chang Thorsten Kurth Kostas Orginos

Feynman-Hellman Theorem and Matrix Elements: A.Walker-Loud

Feynman-Hellman Theorem

The Feynman-Hellman Theorem (FHT) relates matrix elements to (variations in) the spectrum

$$
\frac{\partial E_{n}}{\partial \lambda}=\langle n| H_{\lambda}|n\rangle
$$

The FHT is often used to determine the scalar quark matrix elements in the nucleon (needed to interpret direct dark matter detection) both with Chiral Perturbation Theory and direct lattice QCD calculations

$$
\left.m_{q} \frac{\partial m_{N}}{\partial m_{q}}\right|_{m_{q}=m_{q}^{\text {phy }}}=\langle N| m_{q} \bar{q} q|N\rangle
$$

More recently, by A. Chambers et.al. to study spin structure of the nucleon PRD90 (2014) [1405.3019] and in the next talk - we'll here about advances they made

I'll present an improved method of computing hadronic matrix elements based on the FHT

Feynman-Hellman Theorem and Matrix Elements: A.Walker-Loud

Consider a two point correlation function in the presence of some source

$$
\begin{array}{cl}
C_{\lambda}(t)=\langle\lambda| \hat{O}(t) \hat{O}^{\dagger}(0)|\lambda\rangle & |\lambda\rangle \\
=\frac{1}{\mathcal{Z}_{\lambda}} \int D \Phi e^{-S-S_{\lambda}} O(t) O^{\dagger}(0) & |\Omega\rangle \equiv \lim _{\lambda \rightarrow 0}|\lambda\rangle \\
S_{\lambda}=\lambda \int d^{4} x j(x) & \\
j(x)=\text { some bi-linear current density } \\
\text { e.g. } \lambda j(x)=\bar{q}(x) m_{q} q(x)
\end{array}
$$

Feynman-Hellman Theorem and Matrix Elements: A.Walker-Loud

We can differentiate the correlator with respect to λ

$$
-\frac{\partial C_{\lambda}}{\partial \lambda}=\frac{\partial_{\lambda} \mathcal{Z}_{\lambda}}{\mathcal{Z}_{\lambda}} C_{\lambda}(t)+\frac{1}{\mathcal{Z}_{\lambda}} \int D \Phi e^{-S-S_{\lambda}} \int d^{4} x^{\prime} j\left(x^{\prime}\right) \mathcal{O}(t) \mathcal{O}^{\dagger}(0)
$$

The first term is proportional to a vacuum matrix element and the second contains the matrix element we are interested in. We are really interested in the linear-response

$$
\begin{aligned}
-\left.\frac{\partial C_{\lambda}(t)}{\partial \lambda}\right|_{\lambda=0}= & -C_{\lambda}(t) \int d^{4} x^{\prime}\langle\Omega| j\left(x^{\prime}\right)|\Omega\rangle \\
& +\int d t^{\prime}\langle\Omega| T\left\{\mathcal{O}(t) J\left(t^{\prime}\right) \mathcal{O}^{\dagger}(0)\right\}|\Omega\rangle
\end{aligned}
$$

$$
J(t)=\int d^{3} x j(t, \mathbf{x})
$$

Feynman-Hellman Theorem and Matrix Elements: A.Walker-Loud

Let us focus on the second term:

The middle contribution is the matrix element of interest, summed over all time slices between the src (0) and sank (t) operators. The other two terms we do not want, but must understand.

Feynman-Hellman Theorem and Matrix Elements: A.Walker-Loud

The FHT relates matrix elements to the spectrum. Can we find something similar in QFT?

Let us try the first obvious thing, take a derivative of the effective mass:

$$
\begin{gathered}
m^{e f f}(t, \tau)=\frac{1}{\tau} \ln \left(\frac{C(t)}{C(t+\tau)}\right) \underset{t \rightarrow \infty}{\longrightarrow} \frac{1}{\tau} \ln \left(e^{E_{0} \tau}\right) \\
\left.\frac{\partial m_{\lambda}^{e f f}(t, \tau)}{\partial \lambda}\right|_{\lambda=0}=\frac{1}{\tau}\left[\frac{-\partial_{\lambda} C_{\lambda}(t+\tau)}{C(t+\tau)}-\frac{-\partial_{\lambda} C_{\lambda}(t)}{C(t)}\right]
\end{gathered}
$$

NOTE: even for currents with non- $-\left.\frac{\partial C_{\lambda}(t)}{\partial \lambda}\right|_{\lambda=0}=-C_{\lambda}(t) \int d^{4} x^{\prime}\langle\Omega| j\left(x^{\prime}\right)|\Omega\rangle$
vanishing vacuum matrix elements, this contribution exactly cancels in $+\int d t^{\prime}\langle\Omega| T\left\{\mathcal{O}(t) J\left(t^{\prime}\right) \mathcal{O}^{\dagger}(0)\right\}|\Omega\rangle$ this quantity

Feynman-Hellman Theorem and Matrix Elements: A.Walker-Loud

We are then left with the following

$$
\begin{aligned}
\left.\partial_{\lambda} m_{\lambda}^{e f f}(t, \tau)\right|_{\lambda=0}=\frac{R(t+\tau)-R(t)}{\tau} & \\
& R(t)=\frac{\int d t^{\prime}\langle 0| T\left\{\mathcal{O}(t) J\left(t^{\prime}\right) \mathcal{O}(0)\right\}|0\rangle}{C(t)}
\end{aligned}
$$

To understand this quantity, we begin by inserting complete set's of states where appropriate

$$
\begin{array}{rlrl}
C(t) & =\langle\Omega| \mathcal{O}(t) \mathcal{O}^{\dagger}(0)|\Omega\rangle & & \\
& =\sum_{n}\langle\Omega| e^{\hat{H} t} \mathcal{O}(0) e^{-\hat{H} t} \frac{|n\rangle\langle n|}{2 E_{n}} \mathcal{O}^{\dagger}(0)|\Omega\rangle & & \\
& =\sum_{n} Z_{n} Z_{n}^{\dagger} \frac{e^{-E_{n} t}}{2 E_{n}} & & Z_{n} \equiv\langle\Omega| \mathcal{O}|n\rangle \\
& & Z_{n}^{\dagger} \equiv\langle n| \mathcal{O}^{\dagger}|\Omega\rangle
\end{array}
$$

Feynman-Hellman Theorem and Matrix Elements: A.Walker-Loud

The numerator term we can separate into the three regions:

$$
\begin{array}{ccc}
t^{\prime}<0, & 0 \leq t^{\prime} \leq t, & t<t^{\prime} \\
\text { | } & \text { II } & \text { III }
\end{array}
$$

The middle region, II, is the region we are interested in, where we have the matrix element of interest. The other two regions will contribute to systematics that must be controlled.

$$
\begin{gathered}
N(t) \equiv \int d t^{\prime}\langle\Omega| T\left\{\mathcal{O}(t) J\left(t^{\prime}\right) \mathcal{O}^{\dagger}(0)|\Omega\rangle\right. \\
N(t)=N_{I}(t)+N_{I I}(t)+N_{I I I}(t)
\end{gathered}
$$

Feynman-Hellman Theorem and Matrix Elements: A.Walker-Loud

$$
\begin{aligned}
N_{I I}(t) & =\sum_{t^{\prime}=0}^{t}\langle\Omega| \mathcal{O}(t) J\left(t^{\prime}\right) \mathcal{O}^{\dagger}(0)|\Omega\rangle \\
& =\sum_{t^{\prime}=0}^{t} \sum_{n, m} \frac{\tilde{Z}_{n}^{0} Z_{m}^{\dagger}}{4 E_{n} E_{m}}\langle n| J|m\rangle e^{-E_{n} t} e^{-\left(E_{m}-E_{n}\right) t^{\prime}} \\
& =\sum_{t^{\prime}=0}^{t}\left[\sum_{n} \frac{\tilde{Z}_{n}^{0} Z_{n}^{\dagger}}{4 E_{n}^{2}}\langle n| J|n\rangle e^{-E_{n} t}\right. \\
& \left.+\sum_{n \neq m} \frac{\tilde{Z}_{n}^{0} Z_{m}^{\dagger}}{4 E_{n} E_{m}}\langle n| J|m\rangle e^{-E_{n} t} e^{-\left(E_{m}-E_{n}\right) t^{\prime}}\right]
\end{aligned}
$$

The first term we are interested is independent of t^{\prime}, and becomes enhanced

$$
(t+1) \sum_{n} \frac{\tilde{Z}_{n}^{0} Z_{n}^{\dagger}}{4 E_{n}^{2}}\langle n| J|n\rangle e^{-E_{n} t}
$$

Feynman-Hellman Theorem and Matrix Elements: A.Walker-Loud

$$
\begin{aligned}
N_{I I}(t) & =\sum_{t^{\prime}=0}^{t}\langle\Omega| \mathcal{O}(t) J\left(t^{\prime}\right) \mathcal{O}^{\dagger}(0)|\Omega\rangle \\
& =\sum_{t^{\prime}=0}^{t} \sum_{n, m} \frac{\tilde{Z}_{n}^{0} Z_{m}^{\dagger}}{4 E_{n} E_{m}}\langle n| J|m\rangle e^{-E_{n} t} e^{-\left(E_{m}-E_{n}\right) t^{\prime}} \\
& =\sum_{t^{\prime}=0}^{t}\left[\sum_{n} \frac{\tilde{Z}_{n}^{0} Z_{n}^{\dagger}}{4 E_{n}^{2}}\langle n| J|n\rangle e^{-E_{n} t}\right. \\
& \left.+\sum_{n \neq m} \frac{\tilde{Z}_{n}^{0} Z_{m}^{\dagger}}{4 E_{n} E_{m}}\langle n| J|m\rangle e^{-E_{n} t} e^{-\left(E_{m}-E_{n}\right) t^{\prime}}\right]
\end{aligned}
$$

The t' dependence of the second term is contained entirely in the exponenent

$$
\begin{gathered}
\sum_{t^{\prime}=0}^{t} e^{-\left(E_{m}-E_{n}\right) t^{\prime}}=\frac{1-e^{-\Delta_{m n}(t+1)}}{1-e^{-\Delta_{m n}}} \\
\Delta_{m n} \equiv E_{m}-E_{n}
\end{gathered}
$$

Feynman-Hellman Theorem and Matrix Elements: A.Walker-Loud

The contribution from the region of interest is then

$$
\begin{aligned}
N_{I I}(t) & =(t+1) \sum_{n} \frac{\tilde{Z}_{n}^{0} Z_{n}^{\dagger}}{4 E_{n}^{2}} e^{-E_{n} t} J_{n n} \\
& +\sum_{n \neq m} \frac{\tilde{Z}_{n}^{0} Z_{m}^{\dagger}}{4 E_{n} E_{m}} e^{-E_{n} t} \frac{1-e^{-\Delta_{m n}(t+1)}}{1-e^{-\Delta_{m n}}} J_{n m}
\end{aligned}
$$

NOTE: the contribution from ALL terms depends upon t AND the t dependence of the excited states and transition matrix elements are different from the t dependence of the ground state

Feynman-Hellman Theorem and Matrix Elements: A.Walker-Loud

The contributions from regions I and III must have some symmetry. The easiest way to evaluate these terms is to consider a shifted coordinate system, and a symmetric correlation function about the origin

I: $\sum_{t^{\prime}=-T / 2}^{-t / 2-1}\langle\Omega| \mathcal{O}(t / 2) \mathcal{O}^{\dagger}(-t / 2) J\left(t^{\prime}\right)|\Omega\rangle$

$$
-\frac{T}{2} \leq t \leq \frac{T}{2}
$$

II: $\sum_{t^{\prime}=t / 2+1}^{T / 2}\langle\Omega| J\left(t^{\prime}\right) \mathcal{O}(t / 2) \mathcal{O}^{\dagger}(-t / 2)|\Omega\rangle$

It is straightforward to show this is equivalent to summing over just the first lattice and none of it's images

Feynman-Hellman Theorem and Matrix Elements: A.Walker-Loud

The sum to the matrix element from these two regions is

$$
\frac{\left[\sum_{t^{\prime}=-T / 2}^{-t / 2-1}+\sum_{t^{\prime}=t / 2+1}^{T / 2}\right]\langle\Omega| \mathcal{O}(t / 2) J\left(t^{\prime}\right) \mathcal{O}^{\dagger}(-t / 2)|\Omega\rangle}{\frac{Z_{0} Z_{0}^{\dagger} e^{-E_{0} t}}{2 E_{0}}}
$$

$$
=\sum_{n, m_{J}} e^{-\Delta_{n 0} t} \frac{E_{0}}{2 E_{n} E_{m_{J}}} \frac{1-e^{-E_{m_{J}}(T / 2-t / 2)}}{e^{E_{m_{J}}-1}}\left(\frac{Z_{n} Z_{n m_{J}}^{\dagger}}{Z_{0} Z_{0}^{\dagger}}\left\langle m_{J}\right| J|\Omega\rangle+\frac{Z_{n}^{\dagger} Z_{m_{J} n}}{Z_{0} Z_{0}^{\dagger}}\langle\Omega| J\left|m_{J}\right\rangle\right)
$$

$E_{m_{J}}=$ (mesonic) states which couple to the current, J $\left\langle m_{J}\right| J|\Omega\rangle$
$Z_{n m_{J}} \equiv\langle n| \mathcal{O}\left|m_{J}\right\rangle$

These terms are also not enhanced by t

Feynman-Hellman Theorem and Matrix Elements: A.Walker-Loud

Putting it all together, we are left with a somewhat horrible looking expression

$$
\begin{aligned}
& R(t)=\frac{1}{1+\sum_{n>0} \frac{E_{0}}{E_{n}} \frac{Z_{n} Z_{n}^{\dagger}}{Z_{0} Z_{0}^{\dagger}} e^{-\Delta_{n 0} t}}\left\{(t+1)\left(\frac{J_{00}}{2 E_{0}}+\sum_{n>0} \frac{Z_{n} Z_{n}^{\dagger}}{Z_{0} Z_{0}^{\dagger}} \frac{E_{0}}{E_{n}} \frac{J_{n n}}{2 E_{n}} e^{-\Delta_{n 0} t}\right)\right. \\
&+\sum_{m \neq n} \frac{Z_{n} Z_{m}^{\dagger}}{Z_{0} Z_{0}^{\dagger}} \frac{E_{0}}{\sqrt{E_{n} E_{m}}} \frac{e^{-\Delta_{n 0} t-\frac{\Delta_{n m}}{2}}-e^{-\Delta_{m 0} t-\frac{\Delta_{m n}}{2}}}{e^{+\frac{-\Delta_{n m}}{2}}-e^{-\frac{\Delta_{m n}^{2}}{2}}} \frac{J_{n m}}{2 \sqrt{E_{n} E_{m}}} \\
&+\sum_{m_{J}} \frac{1-e^{-E_{m_{J}}(T-t) / 2}}{\left(e ^ { E _ { m _ { J } } - 1) } \left[\frac{J_{m_{J} \Omega}}{2 E_{m_{J}}} \frac{Z_{0 m_{J}}^{\dagger}}{Z_{0}^{\dagger}}\left(1+\sum_{n>0} e^{-\Delta_{n 0} t} \frac{E_{0}}{E_{n}} \frac{Z_{n}}{Z_{0}} \frac{Z_{n m_{J}}^{\dagger}}{Z_{0 m_{J}}^{\dagger}}\right)\right.\right.} \\
&+\frac{\left.J_{\Omega m_{J}}^{2 E_{m_{J}}} \frac{Z_{0 m_{J}}}{Z_{0}}\left(1+\sum_{n>0} e^{-\Delta_{n 0} t} \frac{E_{0}}{E_{n}} \frac{Z_{n}^{\dagger}}{Z_{0}^{\dagger}} \frac{Z_{n m_{J}}}{Z_{0 m_{J}}}\right)\right]}{}
\end{aligned}
$$

$J_{m n} \equiv\langle m| J|n\rangle$
While this looks horrid, all the unknown quantities in this expression are determined from the standard 2-point functions, except for the matrix elements of interest,

$$
J_{n n}, J_{m n}
$$

Feynman-Hellman Theorem and Matrix Elements: A.Walker-Loud

Putting it all together, we are left with a somewhat horrible looking expression

$$
\begin{aligned}
& R(t)=\frac{1}{1+\sum_{n>0} \frac{E_{0}}{E_{n}} \frac{Z_{n} Z_{0}^{\dagger}}{Z_{0} Z_{0}^{\dagger}}-\Delta_{n o t}}\left\{(t+1)\left(\frac{J_{00}}{2 E_{0}}+\sum_{n>0} \frac{Z_{n} Z_{n}^{\dagger}}{Z_{0} Z_{0}^{\dagger}} \frac{E_{0}}{E_{n}} \frac{J_{n n}}{2 E_{n}} e^{-\Delta_{n o t} t}\right)\right. \\
& \quad+\sum_{m \neq n} \frac{Z_{n} Z_{m}^{\dagger}}{Z_{0} Z_{0}^{\dagger}} \frac{E_{0}}{\sqrt{E_{n} E_{m}}} \frac{e^{-\Delta_{n 0} t-\frac{\Delta_{n m}}{2}}-e^{-\Delta_{m 0} t-\frac{\Delta_{m n}}{2}}}{e^{+\frac{-\Delta_{n m}}{2}}-e^{-\frac{\Delta_{m n}}{2}}} \frac{J_{n m}}{2 \sqrt{E_{n} E_{m}}} \\
& \quad+\sum_{m_{J}} \frac{1-e^{-E_{m_{J}}(T-t) / 2}}{\left(e^{E_{m_{J}}}-1\right)}\left[\frac{J_{m_{J} \Omega}}{2 E_{m_{J}}} \frac{Z_{0 m_{J}}^{\dagger}}{Z_{0}^{\dagger}}\left(1+\sum_{n>0} e^{-\Delta_{n 0 t}} \frac{E_{0}}{E_{n}} \frac{Z_{n}}{Z_{0}} \frac{Z_{n m_{J}}^{\dagger}}{Z_{0 m_{J}}^{\dagger}}\right)\right. \\
& \\
& \left.\left.\quad+\frac{J_{\Omega m_{J}}}{2 E_{m_{J}}} \frac{Z_{0 m_{J}}}{Z_{0}}\left(1+\sum_{n>0} e^{-\Delta_{n 0} t} \frac{E_{0}}{E_{n}} \frac{Z_{n}^{\dagger}}{Z_{0}^{\dagger}} \frac{Z_{n m_{J}}}{Z_{0 m_{J}}}\right)\right]\right\}
\end{aligned}
$$

$J_{m n} \equiv\langle m| J|n\rangle$
Recall: what we are interested in is the quantity

$$
\left.\frac{\partial m_{\lambda}^{e f f}(t, \tau)}{\partial \lambda}\right|_{\lambda=0}=\frac{R(t+\tau)-R(t)}{\tau}
$$

Feynman-Hellman Theorem and Matrix Elements: A.Walker-Loud

Putting it all together, we are left with a somewhat horrible looking expression
$R(t)=\frac{1}{1+\sum_{n>0} \frac{E_{0}}{E_{n}} \frac{Z_{n} Z_{n}^{\dagger}}{Z_{0} Z_{0}^{\dagger}} e^{-\Delta_{n 0} t}}\left\{(t+1)\left(\frac{J_{00}}{2 E_{0}}+\sum_{n>0} \frac{Z_{n} Z_{n}^{\dagger}}{Z_{0} Z_{0}^{\dagger}} \frac{E_{0}}{E_{n}} \frac{J_{n n}}{2 E_{n}} e^{-\Delta_{n 0} t}\right)\right.$

$$
\begin{aligned}
&+\sum_{m \neq n} \frac{Z_{n} Z_{m}^{\dagger}}{Z_{0} Z_{0}^{\dagger}} \frac{E_{0}}{\sqrt{E_{n} E_{m}}} \frac{e^{-\Delta_{n 0} t-\frac{\Delta_{n m}}{2}}-e^{-\Delta_{m 0} t-\frac{\Delta_{m n}}{2}}}{e^{+\frac{-\Delta_{n m}}{2}}-e^{-\frac{\Delta_{m n}}{2}}} \frac{J_{n m}}{2 \sqrt{E_{n} E_{m}}} \\
&+\sum_{m_{J}} \frac{1-e^{-E_{m_{J}}(T-t) / 2}}{\left(e^{E_{m_{J}}}-1\right)}\left[\frac{J_{m_{J} \Omega}}{2 E_{m_{J}}} \frac{Z_{0 m_{J}}^{\dagger}}{Z_{0}^{\dagger}}\left(1+\sum_{n>0} e^{-\Delta_{n 0} t} \frac{E_{0}}{E_{n}} \frac{Z_{n}}{Z_{0}} \frac{Z_{n m_{J}}^{\dagger}}{Z_{0 m_{J}}^{\dagger}}\right)\right. \\
&+\frac{\left.\left.J_{\Omega m_{J}}^{2 E_{m_{J}}} \frac{Z_{0 m_{J}}}{Z_{0}}\left(1+\sum_{n>0} e^{-\Delta_{n 0} t} \frac{E_{0}}{E_{n}} \frac{Z_{n}^{\dagger}}{Z_{0}^{\dagger}} \frac{Z_{n m_{J}}}{Z_{0 m_{J}}}\right)\right]\right\}}{}
\end{aligned}
$$

The leading contribution from is the ground state matrix element of interest.

$$
\begin{aligned}
& \frac{R(t+\tau)-R(t)}{\tau} \\
& \frac{J_{00}}{2 E_{0}}=g_{0}^{J}
\end{aligned}
$$

All other terms are suppressed and time-dependent. The timedependence is critical as it allows for the corrections to be controlled systematically with a single calculation

Feynman-Hellman Theorem and Matrix Elements: A.Walker-Loud

Recall the differentiation of the correlator with respect to λ

$$
-\left.\frac{\partial C_{\lambda}}{\partial \lambda}\right|_{\lambda=0}=\frac{\partial_{\lambda} \mathcal{Z}_{\lambda}}{\mathcal{Z}_{\lambda}} C(t)+\frac{1}{\mathcal{Z}_{\lambda}} \int D \Phi e^{-S} \int d^{4} x^{\prime} j\left(x^{\prime}\right) \mathcal{O}(t) \mathcal{O}^{\dagger}(0)
$$

Vacuum term:

Feynman-Hellman Theorem and Matrix Elements: A.Walker-Loud

Recall the differentiation of the correlator with respect to λ

$$
-\left.\frac{\partial C_{\lambda}}{\partial \lambda}\right|_{\lambda=0}=\frac{\partial_{\lambda} \mathcal{Z}_{\lambda}}{\mathcal{Z}_{\lambda}} C(t)+\frac{1}{\mathcal{Z}_{\lambda}} \int D \Phi e^{-S} \int d^{4} x^{\prime} j\left(x^{\prime}\right) \mathcal{O}(t) \mathcal{O}^{\dagger}(0)
$$

What are these "Feynman-Hellman propagators"?

Feynman-Hellman Theorem and Matrix Elements: A.Walker-Loud

Numerical Implementation:

the "Feynman-Hellman" propagator is given by
$-\quad=S_{F H}(y, x)=\sum_{z} S(y, z) \Gamma(z) S(z, x)$
$S(z, x)$ standard quark propagator off some source at x , to all z
$\Gamma(z) \quad$ some bi-linear operator (can be constant) e.g., γ_{4} for the vector current
$\Gamma(z) S(z, x)$ treat like a source to invert off of
NOTE: this is the same equation as appears in de Divitiis, Petronzio, Tantalo, PLB718 (2012)

Feynman-Hellman Theorem and Matrix Elements: A.Walker-Loud

Numerical Implementation:

$-\left.\partial_{\lambda} C_{\lambda}(t)\right|_{\lambda=0}=0 \square 0$
I. Compute Feynman-Hellman propagator

2. Add FH propagator to two-point function with all relevant combinatorics
3. Construct $\left.\frac{\partial m_{\lambda}^{e f f}(t, \tau)}{\partial \lambda}\right|_{\lambda=0}=\frac{1}{\tau}\left[\frac{-\partial_{\lambda} C_{\lambda}(t+\tau)}{C(t+\tau)}-\frac{-\partial_{\lambda} C_{\lambda}(t)}{C(t)}\right]$
4. Fit!

Feynman-Hellman Theorem and Matrix Elements: A.Walker-Loud

Test case: nucleon axial charge, $L H P C$ comparison there are old LHPC calculations of the nucleon axial charge with moderate pion masses using DWF on asqtad MILC ensembles the "regular" propagators were on disk at JLab, so we could simply make the Feynman-Hellman propagators

(the oscillations are from a large domain wall mass, $M_{5}=1.7$)

Feynman-Hellman Theorem and Matrix Elements: A.Walker-Loud

Test case: nucleon axial charge, Möbius DWF on HISQ $m_{\pi} \simeq 310 \mathrm{MeV}$

$$
a \simeq 0.15 \mathrm{fm} \quad 16^{3} \times 48\left(L_{5}=12\right)
$$

$$
\stackrel{\circ}{g}_{A}\left(m_{\pi} \simeq 310, a \simeq 0.15\right)=1.232(10)
$$

$N_{c f g}=1960$
$N_{s r c}=6$

Möbius DWF inverter in QUDA: achieves ridiculous performance, about 1TFlop/box

Feynman-Hellman Theorem and Matrix Elements: A.Walker-Loud

Möbius DWF on HISQ $16^{3} \times 48\left(L_{5}=12\right) \quad a \simeq 0.15 \mathrm{fm} m_{\pi} \simeq 310 \mathrm{MeV}$ $\stackrel{\circ}{g}_{A}\left(m_{\pi} \simeq 310, a \simeq 0.15\right)=1.232(10) \quad N_{c f g}=1960 \quad N_{s r c}=6$

Feynman-Hellman Theorem and Matrix Elements: A.Walker-Loud

Möbius DWF on HISQ $16^{3} \times 48\left(L_{5}=12\right) \quad a \simeq 0.15 \mathrm{fm} m_{\pi} \simeq 310 \mathrm{MeV}$

$$
\stackrel{\circ}{g}_{A}\left(m_{\pi} \simeq 310, a \simeq 0.15\right)=1.232(10) \quad N_{c f g}=1960 \quad N_{s r c}=6
$$

$2 \times(1 \times 1) \quad 2 \times(2 \times 2) \quad 2 \times(3 \times 3)$

We find the 3 different local Basak operators of the nucleon provide significant improvement in the uncertainty when fit together. The main (all "upper" component quarks) is most important for the central value and the other two Basak operators help control the uncertainty.
The quarks are inverted from
Gaussian-smeared sources with both smeared and point sinks.

Feynman-Hellman Theorem and Matrix Elements: A.Walker-Loud

Möbius DWF on HISQ $16^{3} \times 48\left(L_{5}=12\right) \quad a \simeq 0.15 \mathrm{fm} m_{\pi} \simeq 310 \mathrm{MeV}$ $\stackrel{\circ}{g}_{A}\left(m_{\pi} \simeq 310, a \simeq 0.15\right)=1.232(10) \quad N_{c f g}=1960 \quad N_{s r c}=6$

Correlation matrix

Feynman-Hellman Theorem and Matrix Elements: A.Walker-Loud

Möbius DWF on HISQ $16^{3} \times 48\left(L_{5}=12\right) \quad a \simeq 0.15 \mathrm{fm} m_{\pi} \simeq 310 \mathrm{MeV}$

$$
\stackrel{\circ}{g}_{A}\left(m_{\pi} \simeq 310, a \simeq 0.15\right)=1.232(10) \quad N_{c f g}=1960 \quad N_{s r c}=6
$$

Difficult to see: the gA matrix elements have the same anticorrelations as the spectrum

Correlation matrix

Feynman-Hellman Theorem and Matrix Elements: A.Walker-Loud

Möbius DWF on HISQ $16^{3} \times 48\left(L_{5}=12\right) \quad a \simeq 0.15 \mathrm{fm} m_{\pi} \simeq 310 \mathrm{MeV}$ $\stackrel{\circ}{g}_{A}\left(m_{\pi} \simeq 310, a \simeq 0.15\right)=1.232(10) \quad N_{c f g}=1960$

Feynman-Hellman Theorem and Matrix Elements: A.Walker-Loud

Möbius DWF on Gradient-flowed HISQ

Mixed-Action LQCD with DW valence-fermions poses many good properties for calculations involving static quantities (not multi-particle). e.g.:

- retains good chiral symmetry. Using gradient-flowed HISQ cfgs allows us to keep $\mathrm{m}_{\mathrm{res}}<0.1 \mathrm{~m}_{\mathrm{l}}$ for all light quark masses including physical, with small to moderate values of L_{5} with $1.0<\mathrm{M}_{5}<1.3$
- determination of Z_{A} is simple: use 5 d ward-identity to get $\mathrm{f} \pi$ and 4 d axial current to determine $f \pi / Z_{\mathrm{A}}$
We are using this setup to compute pion-nucleon couplings from BSM CPviolating quark chromo-EDM operators.
We can provide an independent determination of g_{A} addressing standard systematics and an alternate, improved means to control excited state contamination

$g_{A}$$a[\mathrm{fm}]: m_{\pi}[\mathrm{MeV}]$ 0.15 0.12	310	220	135	
	0.09	-	$1.230(25)$	-
	0.06	-	-	-
	$?$	-	$?$	

Feynman-Hellman Theorem and Matrix Elements: A.Walker-Loud

This Feynman-Hellman Method

$$
\left.\frac{\partial m_{\lambda}^{e f f}(t, \tau)}{\partial \lambda}\right|_{\lambda=0}=\frac{1}{\tau}\left[\frac{-\partial_{\lambda} C_{\lambda}(t+\tau)}{C(t+\tau)}-\frac{-\partial_{\lambda} C_{\lambda}(t)}{C(t)}\right]
$$

is very general. We use the FHT to determine the linear response correlation function to compute.

It can be applied to any quark bi-linear operator for any hadronic correlation function, including non-zero momentum transfer and flavor changing interactions...

The big advantage is that for this quantity, the only time-independent quantity is the ground state matrix element of interest. This allows for much better systematic control of the excited state contributions, allowing for a robust determination of the g.s. matrix elements.

The numerical cost is the same as one source-sink separation with the sequential propagator method.

Feynman-Hellman Theorem and Matrix Elements: A.Walker-Loud

This Feynman-Hellman Method

$$
\left.\frac{\partial m_{\lambda}^{e f f}(t, \tau)}{\partial \lambda}\right|_{\lambda=0}=\frac{1}{\tau}\left[\frac{-\partial_{\lambda} C_{\lambda}(t+\tau)}{C(t+\tau)}-\frac{-\partial_{\lambda} C_{\lambda}(t)}{C(t)}\right]
$$

For disconnected diagrams, one begins the calculation as usual: compute the disconnected quark loop. BUT THEN, sum this quark loop over all time, and then multiply the standard two-point correlation function by this number, cfg-by-cfg. This generates $-\left.\partial_{\lambda} C_{\lambda}(t)\right|_{\lambda=0}$

For slightly more post processing: one can construct a further improved correlation function by summing ONLY over $0<t^{\prime}<t$ and then multiply the standard two-point function by this time-dependent number. This removes the contamination from the "outer" time regions.

Feynman-Hellman Theorem and Matrix Elements: A.Walker-Loud

This Feynman-Hellman Method

$$
\left.\frac{\partial m_{\lambda}^{\text {eff }}(t, \tau)}{\partial \lambda}\right|_{\lambda=0}=\frac{1}{\tau}\left[\frac{-\partial_{\lambda} C_{\lambda}(t+\tau)}{C(t+\tau)}-\frac{-\partial_{\lambda} C_{\lambda}(t)}{C(t)}\right]
$$

For disconnected diagrams, one begins the calculation as usual: compute the disconnected quark loop. BUT THEN, sum this quark loop over all time, and then multiply the standard two-point correlation function by this number, cfg-by-cfg. This generates $-\left.\partial_{\lambda} C_{\lambda}(t)\right|_{\lambda=0}$

For further developments of new methods for nucleon structure calculations - see talk by
Chia Cheng (Jason) Chang THUR 14:40 HADRON STRUCTURE

Thauk You

