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Feynman-Hellman Theorem
The Feynman-Hellman Theorem (FHT) relates matrix elements to 
(variations in) the spectrum
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Motivated by the Feynman-Hellman Theorem, we derive an improved method for computing ma-
trix elements of external currents utilizing only two-point correlation functions. The contamination
from excited states is shown to be Euclidean-time dependent allowing for a significantly improved
ability to reliably determine and control the systematics. We demonstrate the utility of our method
with a calculation of the nucleon axial-charge, performed at a single lattice spacing and a moderate
unphysical pion mass. The Feynman-Hellman Theorem can be derived from the long Euclidean-time
limit of correlation functions determined with functional derivatives of the partition function. This
elucidates the generic applicability of our new method: one can determine matrix elements of any
external current by computing only two-point correlation functions, including non-zero momentum
transfer and flavor-changing matrix elements.

Introduction:

The Feynman-Hellman Theorem and QFT: The
Feynman-Hellman Theorem (FHT) in quantum mechan-
ics relates matrix elements to variations in the spectrum:
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where the Hamiltonian is given by H = H0 + �H�. This
simple relation is easily derived at first order in pertur-
bation theory but is applicable more generally. The FHT
is often invoked in lattice QCD calculations to determine
the scalar quark matrix elements in the nucleon
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for both the light (q = {u, d}) and strange (q = s) quark
matrix elements.

The important observation about the FHT is that it
relates a three-point correlation function to a change in
a two-point correlation function due to some perturb-
ing source. The lattice calculation of three point func-
tions, particularly those involving nucleons and other
baryons, are particularly challenging for a number of rea-
sons, while there are now many highly advanced methods
developed for computing two-point correlation functions
and the spectrum. The calculation of three point func-
tions are stochastically noisy and often su↵er from con-
tamination from excited states. Controlling these sys-
tematics requires a significant increase in the numerical
cost of the calculations making full calculations often pro-
hibitively expensive. If we can invoke the FHT to com-
pute matrix elements using only two-point correlation
functions, then we can apply our sophisticated meth-
ods for spectroscopy to these important non-perturbative
quantities with reduced systematics.

The FHT has already been utilized to compute certain
matrix elements of the nucleon cite[Adelaidians]

Can we provide more insight on the connection be-
tween the FHT and QFT?

A New Method: Consider a two point correlation func-
tion computed in the presence of some external source
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Z
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with j(x) some bi-linear current density. The derivative
of the correlation function is related to the matrix ele-
ments of the current
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The first term is proportional vacuum matrix element of
the current and vanishes unless the current has vacuum
quantum numbers. The second term involves an integral
over the the matrix elements and we have
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where we have defined J(t) =
R
d3xj(t, ~x). We see ex-

plicitly now that the second term contains the matrix
element we are interested in, summed over all time in-
sertions. For 0 < t0 < t, this is in fact the quantity

The FHT is often used to determine the scalar quark matrix elements 
in the nucleon (needed to interpret direct dark matter detection) both 
with Chiral Perturbation Theory and direct lattice QCD calculations
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More recently, by A. Chambers et.al. to study spin structure of the 
nucleon PRD90 (2014) [1405.3019] 
and in the next talk - we’ll here about advances they made

I’ll present an improved method of computing hadronic matrix 
elements based on the FHT



Consider a two point correlation function in the presence of some source
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We can differentiate the correlator with respect to 𝝺  
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The first term is proportional to a vacuum matrix element and the 
second contains the matrix element we are interested in.  We are 
really interested in the linear-response

J(t) =

Z
d

3
x j(t,x)
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Let us focus on the second term:

2

element we are interested in, summed over all time in-
sertions. For 0 < t0 < t, this is in fact the quantity
R(t) defined in the summation method summed over all

time insertions and the other time regions will contribute
systematic contaminations.
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The FHT relates matrix elements to derivatives of the
spectrum. The e↵ective mass is a derived quantity which
asymptotes to the ground state mass in the long Eu-
clidean time limit,
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Consider the derivative of the e↵ective mass in the pres-
ence of the external current
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From Eq. (6), we observe the term proportional to the
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t0

The middle contribution is the matrix element of interest, summed 
over all time slices between the src (0) and sank (t) operators.  The 
other two terms we do not want, but must understand.

+ +

(+ disconnected pieces)
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NOTE: even for currents with non-
vanishing vacuum matrix elements, 
this contribution exactly cancels in 
this quantity

Feynman-Hellman Theorem and Matrix Elements:   A.Walker-Loud

A New Method for Computing Matrix Elements
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Motivated by the Feynman-Hellman Theorem, we derive an improved method for computing ma-
trix elements of external currents utilizing only two-point correlation functions. The contamination
from excited states is shown to be Euclidean-time dependent allowing for a significantly improved
ability to reliably determine and control the systematics. We demonstrate the utility of our method
with a calculation of the nucleon axial-charge, performed at a single lattice spacing and a moderate
unphysical pion mass. The Feynman-Hellman Theorem can be derived from the long Euclidean-time
limit of correlation functions determined with functional derivatives of the partition function. This
elucidates the generic applicability of our new method: one can determine matrix elements of any
external current by computing only two-point correlation functions, including non-zero momentum
transfer and flavor-changing matrix elements.

Introduction:

The Feynman-Hellman Theorem and QFT: The
Feynman-Hellman Theorem (FHT) in quantum mechan-
ics relates matrix elements to variations in the spectrum:

@En

@�
= hn|H�|ni (1)

where the Hamiltonian is given by H = H0 + �H�. This
simple relation is easily derived at first order in pertur-
bation theory but is applicable more generally. The FHT
is often invoked in lattice QCD calculations to determine
the scalar quark matrix elements in the nucleon

mq
@mN

@mq

����
mq=mphy

q

= hN |mq q̄q|Ni , (2)

for both the light (q = {u, d}) and strange (q = s) quark
matrix elements.

The important observation about the FHT is that it
relates a three-point correlation function to a change in
a two-point correlation function due to some perturb-
ing source. The lattice calculation of three point func-
tions, particularly those involving nucleons and other
baryons, are particularly challenging for a number of rea-
sons, while there are now many highly advanced methods
developed for computing two-point correlation functions
and the spectrum. The calculation of three point func-
tions are stochastically noisy and often su↵er from con-
tamination from excited states. Controlling these sys-
tematics requires a significant increase in the numerical
cost of the calculations making full calculations often pro-
hibitively expensive. If we can invoke the FHT to com-
pute matrix elements using only two-point correlation
functions, then we can apply our sophisticated meth-
ods for spectroscopy to these important non-perturbative
quantities with reduced systematics.

The FHT has already been utilized to compute certain
matrix elements of the nucleon cite[Adelaidians]

Can we provide more insight on the connection be-
tween the FHT and QFT?

A New Method: Consider a two point correlation func-
tion computed in the presence of some external source

C�(t) = h�|Ô(t)Ô†(0)|�i
=

1

Z�

Z
D�e�S�S�O(t)O†(0) (3)

with

S� = �

Z
d4xj(x) (4)

with j(x) some bi-linear current density. The derivative
of the correlation function is related to the matrix ele-
ments of the current

�@C�

@�
=

@�Z�

Z�
C�(t) +

1

Z�

Z
D�e�S�S�

Z
d4x0j(x0) O(t)O†(0)

(5)

The first term is proportional vacuum matrix element of
the current and vanishes unless the current has vacuum
quantum numbers. The second term involves an integral
over the the matrix elements and we have

�@C�(t)
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����
�=0

= � C�(t)

Z
d4x0h⌦|j(x0)|⌦i

+

Z
dt0h⌦|T{O(t)J(t0)O†(0)}|⌦i (6)

where we have defined J(t) =
R
d3xj(t, ~x). We see ex-

plicitly now that the second term contains the matrix



We are then left with the following

2

element we are interested in, summed over all time in-
sertions. For 0 < t0 < t, this is in fact the quantity
R(t) defined in the summation method summed over all

time insertions and the other time regions will contribute
systematic contaminations.
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The FHT relates matrix elements to derivatives of the
spectrum. The e↵ective mass is a derived quantity which
asymptotes to the ground state mass in the long Eu-
clidean time limit,
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Consider the derivative of the e↵ective mass in the pres-
ence of the external current
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From Eq. (6), we observe the term proportional to the
vacuum matrix element exactly cancels in the di↵erence
in Eq. (9) even for scalar currents, leaving us with terms
only proportional to the matrix elements of interest
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To understand this quantity, we begin by inserting complete set’s of 
states where appropriate
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Zn ⌘ h⌦|O|ni
Z†
n ⌘ hn|O†|⌦i
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The numerator term we can separate into the three regions:

t0 < 0, 0  t0  t, t < t0

I II III
The middle region, II, is the region we are interested in, where we 
have the matrix element of interest.  The other two regions will 
contribute to systematics that must be controlled.
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N(t) ⌘
Z

dt0h⌦|T{O(t)J(t0)O†(0)|⌦i

N(t) = NI(t) +NII(t) +NIII(t)



The first term we are interested is independent of t’, and becomes 
enhanced
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3

Now consider the numerator in Eq. (??), which we denote

N(t) =

Z
dt0h0|T{O(t)J(t0)O†(0)}|0i . (16)

Let us consider the three time regions separately

I: t0 < 0 ,

II: 0  t0  t ,

III: t < t0 ,

and we will now work with a discrete finite time as exists
in lattice QFT calculations. In intermediate expressions,
we will drop the explicit spatial dependence.

NII(t) =
tX

t0=0

h⌦|O(t)J(t0)O†(0)|⌦i

=
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4EnEm
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4E2
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hn|J |nie�Ent
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X

n 6=m

Z̃0

nZ
†

m

4EnEm
hn|J |mie�Ente�(Em�En)t

0
�

(17)

The first term is independent of t0 and is thus enhanced
by an overall factor of t+ 1,

(t+ 1)
X

n

Z̃0

nZ
†

n

4E2
n

hn|J |nie�Ent ,

(the extra +1 is from the inclusive sum over t0 2 [0, t]).
The t0 dependence of the second term is contained en-
tirely in the exponential factor

tX

t0=0

e�(Em�En)t
0
=

1� e��mn(t+1)

1� e��mn
, (18)

where we have defined

�mn ⌘ Em � En . (19)

The numerator in this time region is then given by
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1� e��mn
Jnm , (20)

where we have defined Jnm ⌘ hn|J |mi. In this expres-
sion, the only terms which do not also appear in the two
point correlation functions are the matrix elements of in-
terest, Jnm, and particularly, J00.

Let us now consider the contribution from time regions
I and III. Given the finite temporal extent of our box,
and the (anti-)periodic boundary conditions standardly
used, there must be a symmetry in the contribution from
regions I and III. To make this transparent, let us tem-
porarily shift the origin such that we have

NI(t) =

�t/2�1X

t0=�T/2

h⌦|O(t/2)O†(�t/2)J(t0)|⌦i ,

NIII(t) =

T/2X
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Inserting complete sets of states and performing the sum
over t0, we arrive at

NI+III(t) =
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e�Ent

4EnEmJ
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⇤
, (22)

where we have defined

Z†

nmJ
⌘ hn|O†|mJi . (23)

The time-translation invariance of the theory ensures this
expression depends only upon the separation time t, as
well as depending upon the finite temporal extent, T .
The states |mJi are those which are coupled to the vac-
uum by the current J .

R(t) can be expressed in a form useful for the long-time
limit (but still t ⌧ T ),
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terest, Jnm, and particularly, J00.

Let us now consider the contribution from time regions
I and III. Given the finite temporal extent of our box,
and the (anti-)periodic boundary conditions standardly
used, there must be a symmetry in the contribution from
regions I and III. To make this transparent, let us tem-
porarily shift the origin such that we have
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where we have defined

Z†

nmJ
⌘ hn|O†|mJi . (23)

The time-translation invariance of the theory ensures this
expression depends only upon the separation time t, as
well as depending upon the finite temporal extent, T .
The states |mJi are those which are coupled to the vac-
uum by the current J .

R(t) can be expressed in a form useful for the long-time
limit (but still t ⌧ T ),



The t’ dependence of the second term is contained entirely in the 
exponenent
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The contribution from the region of interest is then

NOTE: the contribution from ALL terms depends upon t AND the t 
dependence of the excited states and transition matrix elements are 
different from the t dependence of the ground state



The contributions from regions I and III must have some symmetry.  
The easiest way to evaluate these terms is to consider a shifted 
coordinate system, and a symmetric correlation function about the 
origin
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element we are interested in, summed over all time in-
sertions. For 0 < t0 < t, this is in fact the quantity
R(t) defined in the summation method summed over all

time insertions and the other time regions will contribute
systematic contaminations.
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The FHT relates matrix elements to derivatives of the
spectrum. The e↵ective mass is a derived quantity which
asymptotes to the ground state mass in the long Eu-
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From Eq. (6), we observe the term proportional to the
vacuum matrix element exactly cancels in the di↵erence
in Eq. (9) even for scalar currents, leaving us with terms
only proportional to the matrix elements of interest
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II:

It is straightforward to show this is equivalent to summing over just the 
first lattice and none of it’s images
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The sum to the matrix element from these two regions is

EmJ = (mesonic) states which couple to the current, J
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ZnmJ ⌘ hn|O|mJi

These terms are also not enhanced by t
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Putting it all together, we are left with a somewhat horrible looking 
expression
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While this looks horrid, all the unknown quantities in this expression 
are determined from the standard 2-point functions, except for the 
matrix elements of interest, 

Jnn, Jmn



Putting it all together, we are left with a somewhat horrible looking 
expression
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Jmn ⌘ hm|J |ni

Recall: what we are interested in is the quantity

2

II. THE FEYNMAN-HELLMAN THEOREM
AND A NEW METHOD

Consider a two point correlation function computed in
the presence of some external source

C�(t) = h�|Ô(t)Ô†(0)|�i
=

1

Z�

Z
D�e�S�S�O(t)O†(0) (3)

with the external source coupled through some bi-linear
current density j(x)

S� = �

Z
d4xj(x) , (4)

and partition function in the presence of the source,

Z� =

Z
D�e�S�S� . (5)

Here, � is a general field operator representing the var-
ious quantum fields of the theory. The state |�i is the
vacuum state in the presence of the external source and
we denote the source-less vacuum state by

|⌦i = lim
�!0

|�i . (6)

The operator O†(0) creates a tower of states with speci-
fied quantum numbers out of the vacuum at time t = 0,
which are later destroyed by the conjugate operator O(t)
at time t.

We are interested in the partial derivative of this corre-
lation function with respect to �, at � = 0. This partial
derivative can be built from an integral of uniform func-
tional derivatives over the space-time volume. Or, if we
wish for more general matrix elements, such as those in-
volving momentum transfer, an integral over non-uniform
values of �(x). For now, we will focus on the simplest case
of a constant source, �(x) = �.

The partial derivative of interest is related to the ma-
trix elements of the current j(x)

� @C�

@�

����
�=0

=
@�Z�

Z C(t)

+
1

Z
Z

D�e�S

Z
d4x0j(x0) O(t)O†(0) . (7)

The first term is proportional to the vacuum matrix ele-
ment of the current and vanishes unless the current has
vacuum quantum numbers. The second term involves an
integral over matrix elements involving the current and
the creation/annihilation operators:

�@C�(t)

@�

����
�=0

= � C(t)

Z
dt0h⌦|J(t0)|⌦i

+

Z
dt0h⌦|T{O(t)J(t0)O†(0)}|⌦i (8)

where we have defined J(t) =
R
d3xj(t, ~x). The second

term is related to the hadronic matrix of interest in the
time region 0 < t0 < t. In the other time regions, t0 < 0
and t0 > t, the current J(t0) creates/destroys a tower of
states that also couple to the states created by O (in the
case of quark bi-linear operators in QCD, these are just
the mesons coupled to the q̄ � q currents):

Z
dt0h⌦|T{O(t)J(t0)O†(0)}|⌦i =

Z t

�1

dt0h⌦|O(t)O†(0)J(t0)|⌦i

+

Z t

0
dt0h⌦|O(t)J(t0)O†(0)|⌦i

+

Z
1

t
dt0h⌦|J(t0)O(t)O†(0)|⌦i . (9)

Recall, the FHT relates matrix elements to derivatives
of the spectrum. In Euclidean calculations, the e↵ec-
tive mass is a derived quantity which asymptotes to the
ground state energy in the long time limit,

meff (t, ⌧) =
1

⌧
ln

✓
C(t)

C(t+ ⌧)

◆
�!
t!1

1

⌧
ln(eE0⌧ ) (10)

In analogy with the FHT, consider the linear response of
the e↵ective mass to the external current

@meff
� (t, ⌧)

@�

����
�=0

= �1

⌧


@�C�(t+ ⌧)

C(t+ ⌧)
� @�C�(t)

C(t)

�
(11)

A first observation to make is that the term propor-
tional to the vacuum matrix element in Eq. (8) exactly
cancels in the di↵erence in Eq. (11). The linear response
of the e↵ective mass is therefore given by

@meff
� (t, ⌧)

@�

����
�=0

=
R(t+ ⌧)�R(t)

⌧
(12)

where

R(t) ⌘
R
dt0h0|T{O(t)J(t0)O†(0)}|0i

C(t)
. (13)

Let us analyze this expression with the usual spectral
analysis. The regular two-point correlation function in
time-momentum space, with p = 0 is given by

C(t,0) =
X

x

h0|O(t,x)O†(0,0)|0i

=
X

n

Z̃0

nZ
†

n

2En
e�Ent (14)

where the overlap factors are defined as

Z†

n = hn|O†(0,0)|0i ,
Z̃p

n =
X

x

eip·xh0|O(0,x)|ni . (15)



Putting it all together, we are left with a somewhat horrible looking 
expression
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The leading contribution from                            
is the ground state matrix 
element of interest.

R(t+ ⌧)�R(t)

⌧
J00
2E0

= gJ0

All other terms are suppressed and time-dependent.  The time-
dependence is critical as it allows for the corrections to be controlled 
systematically with a single calculation 
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Recall the differentiation of the correlator with respect to 𝝺  

0 00 t tt

t0

t0
t0

0t

t0

�@C�

@�

����
�=0

=
@�Z�

Z�
C(t) +

1

Z�

Z
D�e�S

Z
d

4
x

0
j(x0)O(t)O†(0)

Vacuum term:
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Recall the differentiation of the correlator with respect to 𝝺  

0 00 t tt

t0

t0
t0

0t

t0

�@C�

@�

����
�=0

=
@�Z�

Z�
C(t) +

1

Z�

Z
D�e�S

Z
d

4
x

0
j(x0)O(t)O†(0)

What are these “Feynman-Hellman propagators”?



Numerical Implementation:

the “Feynman-Hellman” propagator is given by

= SFH(y, x) =
X

z

S(y, z)�(z)S(z, x)

S(z, x) standard quark propagator off some source at x, to all z

�(z) some bi-linear operator (can be constant)
e.g.,       for the vector current�4

�(z)S(z, x) treat like a source to invert off of
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NOTE: this is the same equation as appears in 
de Divitiis, Petronzio, Tantalo, PLB718 (2012)



Numerical Implementation:

Feynman-Hellman Theorem and Matrix Elements:   A.Walker-Loud

1. Compute Feynman-Hellman propagator                 with current 

2. Add FH propagator to two-point function with all relevant combinatorics

3. Construct 

4. Fit!

2

element we are interested in, summed over all time in-
sertions. For 0 < t0 < t, this is in fact the quantity
R(t) defined in the summation method summed over all

time insertions and the other time regions will contribute
systematic contaminations.

Z
dt0h⌦|T{O(t)J(t0)O†(0)}|⌦i =

Z
1

t
dt0h⌦|J(t0)O(t)O†(0)|⌦i

+

Z t

0
dt0h⌦|O(t)J(t0)O†(0)|⌦i

+

Z t

�1

dt0h⌦|O(t)O†(0)J(t0)|⌦i (7)

The FHT relates matrix elements to derivatives of the
spectrum. The e↵ective mass is a derived quantity which
asymptotes to the ground state mass in the long Eu-
clidean time limit,

meff (t, ⌧) =
1

⌧
ln

✓
C(t)

C(t+ ⌧)

◆
�!
t!1

1

⌧
ln(eE0⌧ ) (8)

Consider the derivative of the e↵ective mass in the pres-
ence of the external current

@meff
� (t, ⌧)

@�

����
�=0

=
1

⌧

�@�C�(t+ ⌧)

C(t+ ⌧)
� �@�C�(t)

C(t)

�
(9)

From Eq. (6), we observe the term proportional to the
vacuum matrix element exactly cancels in the di↵erence
in Eq. (9) even for scalar currents, leaving us with terms
only proportional to the matrix elements of interest

@meff
� (t, ⌧)

@�

����
�=0

=
1

⌧

Z
dt0

 h0|T{O(t+ ⌧)J(t0)O†(⌧)}|0i
C(t+ ⌧)

� h0|T{O(t)J(t0)O†(0)}|0i
C(t)

�

=
R(t+ ⌧)�R(t)

⌧
(10)

where

R(t) =

R
dt0h0|T{O(t)J(t0)O(0)}|0i

C(t)
(11)

Relation to other methods:

derivative of e↵ective mass

Implementation:

Systematics:

An application: the nucleon axial charge:

Conclusions:
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Test case: nucleon axial charge, LHPC comparison
there are old LHPC calculations of the nucleon axial charge with 
moderate pion masses using DWF on asqtad MILC ensembles
the “regular” propagators were on disk at JLab, so we could simply 
make the Feynman-Hellman propagators
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(the oscillations are from a large domain wall mass,                    )M5 = 1.7



Test case: nucleon axial charge, Möbius DWF on HISQ
m⇡ ' 310 MeV

a ' 0.15 fm
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163 ⇥ 48(L5 = 12)

Ncfg = 1960

Nsrc = 6
Möbius DWF inverter in QUDA: achieves 
ridiculous performance, about 1TFlop/box

g̊A(m⇡ ' 310, a ' 0.15) = 1.232(10)
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Möbius DWF on HISQ m⇡ ' 310 MeVa ' 0.15 fm
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163 ⇥ 48(L5 = 12)
Ncfg = 1960 Nsrc = 6g̊A(m⇡ ' 310, a ' 0.15) = 1.232(10)



Möbius DWF on HISQ m⇡ ' 310 MeVa ' 0.15 fm
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163 ⇥ 48(L5 = 12)
Ncfg = 1960 Nsrc = 6g̊A(m⇡ ' 310, a ' 0.15) = 1.232(10)

We find the 3 different local Basak 
operators of  the nucleon provide 
significant improvement in the 
uncertainty when fit together.  
The main (all “upper” component 
quarks) is most important for the 
central value and the other two 
Basak operators help control the 
uncertainty. 
The quarks are inverted from 
Gaussian-smeared sources with 
both smeared and point sinks.

2⇥ (1⇥ 1) 2⇥ (2⇥ 2) 2⇥ (3⇥ 3)



Möbius DWF on HISQ m⇡ ' 310 MeVa ' 0.15 fm
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163 ⇥ 48(L5 = 12)
Ncfg = 1960 Nsrc = 6g̊A(m⇡ ' 310, a ' 0.15) = 1.232(10)

Correlation matrix



Möbius DWF on HISQ m⇡ ' 310 MeVa ' 0.15 fm

Feynman-Hellman Theorem and Matrix Elements:   A.Walker-Loud

163 ⇥ 48(L5 = 12)
Ncfg = 1960 Nsrc = 6g̊A(m⇡ ' 310, a ' 0.15) = 1.232(10)

Correlation matrix

Difficult to see: the gA matrix 
elements have the same anti-
correlations as the spectrum
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Möbius DWF on Gradient-flowed HISQ
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a[fm] : m⇡[MeV] 310 220 135

0.15 1.239(6) 1.230(25) –

0.12 – – –

0.09 – – ?

0.06 ? ? NA
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Mixed-Action LQCD with DW valence-fermions poses many good properties for 
calculations involving static quantities (not multi-particle).  e.g.: 

• retains good chiral symmetry.  Using gradient-flowed HISQ cfgs allows us to 
keep mres < 0.1 ml for all light quark masses including physical, with small to 
moderate values of  L5 with 1.0 < M5 < 1.3 

• determination of  ZA is simple: use 5d ward-identity to get f𝜋 and 4d axial 
current to determine f𝜋/ZA 

We are using this setup to compute pion-nucleon couplings from BSM CP-
violating quark chromo-EDM operators.   
We can provide an independent determination of        addressing standard 
systematics and an alternate, improved means to control excited state 
contamination

gA

gA



This Feynman-Hellman Method

is very general.  We use the FHT to determine the linear response 
correlation function to compute.

It can be applied to any quark bi-linear operator for any hadronic 
correlation function, including non-zero momentum transfer and flavor 
changing interactions…

The big advantage is that for this quantity, the only time-independent 
quantity is the ground state matrix element of interest.  This allows for 
much better systematic control of the excited state contributions, 
allowing for a robust determination of the g.s. matrix elements.

The numerical cost is the same as one source-sink separation with 
the sequential propagator method.
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This Feynman-Hellman Method

For disconnected diagrams, one begins the calculation as usual: 
compute the disconnected quark loop.  BUT THEN, sum this quark 
loop over all time, and then multiply the standard two-point correlation 
function by this number, cfg-by-cfg.  This generates 

For slightly more post processing: one can construct a further 
improved correlation function by summing ONLY over                   and 
then multiply the standard two-point function by this time-dependent 
number.  This removes the contamination from the “outer” time 
regions.
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For further developments of new methods for nucleon structure 
calculations - see talk by 
Chia Cheng (Jason) Chang THUR 14:40 HADRON STRUCTURE
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