

D-Meson Mixing in 2+1 Lattice QCD and Related Topics

Andreas S. Kronfeld Fermilab & IAS TU München

Lattice 2016 July 29, 2016 University of Southampton

Fermilab Lattice and MILC Collaborations

A. Bazavov, C. Bernard, C.M. Bouchard, C.C. Chang, C. DeTar,
Daping Du, A.X. El-Khadra, E.D. Freeland, E. Gámiz, Steven Gottlieb,
U.M. Heller, ASK, J. Laiho, P. B. Mackenzie, E. T. Neil, J. Simone,
R. Sugar, D. Toussaint, R. S. Van de Water, Ran Zhou

*B*_(s) mixing in Phys. Rev. D 93, 113016 (2016) [arXiv:1602.03560 [hep-lat]]

Neutral-Meson Mixing

• In the Standard Model, neutral mesons can oscillate into their antiparticles:

- · In extensions of the SM, other particles
 - could appear in the boxes;
 - could appear at the tree level: flavor-changing neutral current.
- Observed in the lab for all neutral mesons: K^0 , D^0 , B^0 , B_s .

One $\Delta F = 2$ or Two $\Delta F = 1$ Interactions see, *e.g.*, Artuso, Meadows, Petrov review

• Mixing originates in two kinds of processes:

$$(M_{12} - \frac{i}{2}\Gamma_{12}) \propto \langle D^0 | \mathscr{L}^{\Delta C=2} | \bar{D}^0 \rangle + \sum_n \frac{\langle D^0 | \mathscr{L}^{\Delta C=1} | n \rangle \langle n | \mathscr{L}^{\Delta C=1} | \bar{D}^0 \rangle}{M_D - E_n + i\varepsilon}$$

where the $\Delta F = 1$ interactions can be separated by hadronic distances.

- Second term is very difficult to estimate.
- With D mesons (unlike K, B, B_s) it is also not negligible: d, s, b in loop.
- Even so, some BSMs modify first term only [*e.g.*, arXiv:0903.2830].

Effective Hamiltonian

• After integrating out heavy particles:

$$\mathscr{L} = \mathscr{L}_{\mathrm{kin}}[\ell, q, \gamma, g] + \sum_{i} \mathscr{C}_{i}(\alpha, \alpha_{s}, G_{F}, \sin^{2}\theta, m_{\ell}, m_{q}, V; \mathbf{NP}) \mathscr{L}_{i}[\ell, q, \gamma, g]$$

- For $\Delta F = 2$ processes, discrete symmetries and Fierz rearrangement reduces the list of operators to 8 = 5 + 3:
 - $\mathcal{O}_{1} = \bar{c}\gamma^{\mu}Lu\,\bar{c}\gamma^{\mu}Lu$ $\mathcal{O}_{2} = \bar{c}Lu\,\bar{c}Lu$ $\mathcal{O}_{2} = \bar{c}Lu\,\bar{c}Lu$ $\mathcal{O}_{3} = \bar{c}^{\alpha}Lu^{\beta}\,\bar{c}^{\beta}Lu^{\alpha}$ $\mathcal{O}_{4} = \bar{c}Lu\,\bar{c}Ru$ $\mathcal{O}_{5} = \bar{c}^{\alpha}Lu^{\beta}\,\bar{c}^{\beta}Ru^{\alpha}c$

By parity in QCD: $\langle D^0 | \tilde{\mathscr{O}}_i | \bar{D}^0 \rangle = \langle D^0 | \mathscr{O}_i | \bar{D}^0 \rangle$

Fermilab/MILC D vs $B_{(s)}$ Mixing

- Our (ongoing) *D*-meson and (published) $B_{(s)}$ -meson analyses have:
 - same ensembles, same light valence masses;
 - same treatment of chiral perturbation theory;
 - same mostly nonperturbative matching to continuum QCD.
- Some differences:
 - ranges for correlator fits—better signal-to-noise for D;
 - quote renormalized matrix elements at 3 GeV for D but m_b for $B_{(s)}$.

Lattice Operators

• Staggered light quarks χ_u and clover (a la Fermilab) heavy quarks Ψ_c :

$$O_{1}(x) = \bar{\Psi}_{c}(x)\gamma^{\mu}L\Omega(x)\underline{\chi}_{u}(x)\bar{\Psi}_{c}(x)\gamma^{\mu}L\Omega(x)\underline{\chi}_{u}(x)$$

$$O_{2}(x) = \bar{\Psi}_{c}(x)L\Omega(x)\underline{\chi}_{u}(x)\bar{\Psi}_{c}(x)L\Omega(x)\underline{\chi}_{u}(x)$$

$$O_{3}(x) = \bar{\Psi}_{c}(x)^{\alpha}L\Omega(x)\underline{\chi}_{u}(x)^{\beta}\bar{\Psi}_{c}(x)^{\beta}L\Omega(x)\underline{\chi}_{u}(x)^{\alpha}$$

$$O_{4}(x) = \bar{\Psi}_{c}(x)L\Omega(x)\underline{\chi}_{u}(x)\bar{\Psi}_{c}(x)R\Omega(x)\underline{\chi}_{u}(x)$$

$$O_{5}(x) = \bar{\Psi}_{c}(x)^{\alpha}L\Omega(x)\underline{\chi}_{u}(x)^{\beta}\bar{\Psi}_{c}(x)^{\beta}R\Omega(x)\underline{\chi}_{u}(x)^{\alpha}$$

- Three-point correlators contain the desired terms, opposite-parity terms (as usual with staggered), and "wrong-spin" contributions.
- Undesired parts removed in correlator fits and chiral-continuum extrap'n.

asqtad 2+1 Ensembles from MILC

• Partially quenched data on 600–2200 gauge fields with (sea)

177 MeV $\leq M_{\pi} \leq 555$ MeV 257 MeV $\leq M_{\pi}^{\text{rms}} \leq 670$ MeV

Two-Point Functions: Priors and Posteriors

Three-Point Functions: S-to-N & Fit Regions

 $B_q, m_q = m_s/10, 0.09 \text{ fm}, O_2$

 $D_q, m_q = m_s/5, 0.12 \text{ fm}, O_4$

Matching and Renormalization

• Mostly nonperturbative (mNPR):

$$\bar{O}_i = Z_{V_{cc}^4} Z_{V_{uu}^4} \rho_{ij} O_j \doteq \mathcal{O}_i + \mathcal{O}(\alpha_s a, a^2)$$

where the nonperturbative Z_V s remove wave-function factors, all tadpoles, and some vertex corrections.

- Remaining factor ρ_{ij} obtained at one loop in two independent calculations.
- Two-loop corrections incorporated into chiral-continuum fit.
- Checks by changing mNPR to tadpole-improved PT: $Z_{ij} = u_0^2 \tilde{Z}_{ij}$, with u_0 from plaquette or Landau link.

Chiral-Continuum Extrapolation

Wrong-Spin Terms

- As noted above, the 3-point functions with staggered-clover 4-quark operators lead to contributions with the wrong spin.
- · Schematically [C. Bernard, arXiv:1303.0435],

- Base fit: use single set of β_i for all five matrix elements.
- Alternate fit: fit each matrix element individually, allowing uninformed $\beta_{j\neq i}$.

D Mixing Operators 1, 2, 3

D Mixing Operators 4, 5

• *B*-meson plots look similar

Stability under Fit Variations

- f_K instead of f_{π} ;
- different renorm'n;
- vary χPT data, priors;
- vary discretization effects included;
- "dumb" fits.

Stability under Fit Variations

- f_K instead of f_{π} ;
- different renorm'n;
- vary χPT data, priors;
- vary discretization effects included;
- "dumb" fits.

Stability under Fit Variations

- f_K instead of f_{π} ;
- different renorm'n;
- vary χPT data, priors;
- vary discretization effects included;
- "dumb" fits.

Nearly Final (Published) Results for D(B) Mesons

• We report continuum results for two choices of evanescent operators in dimensional regularization: BBGLN and BMU:

BBGLN	$M_D^{-1} \langle D^0 \mathscr{O}_i \bar{D}^0 \rangle \left(\text{GeV}^3 \right)$	$f_{B_q}^2 B_{B_q} \left(\mathrm{GeV}^2\right)$	
		q = d	q = s
\mathcal{O}_1	0.0432(29)(9)	0.0342(29)(7)	0.0498(30)(10)
\mathcal{O}_2	-0.0833(38)(17)	0.0303(27)(6)	0.0449(29)(9)
\mathcal{O}_3	0.0248(16)(5)	0.0399(77)(8)	0.0571(77)(11)
\mathcal{O}_4	0.1469(69)(30)	0.0390(28)(8)	0.0534(30)(11)
\mathcal{O}_5	0.0554(38)(11)	0.0361(35)(7)	0.0493(36)(10)
μ	3 GeV	m_b	m_b

where second error is an estimate (2%) for the omission of the charm sea.

• Papers (will) also give correlations among these quantities, bag factors, etc.

Comparison with ETM Collaboration

• ETM: $n_f = 2 + 1 + 1$ • arXiv:1505.06639

• Fermilab/MILC: $n_f = 2+1$

• ETM: $n_f = 2$ arXiv:1403.7302

Decay Constants & Bag Factors

• Fermilab/MILC also calculating decay constants on the same ensembles.

Phenomenology

- Matrix elements for D mixing \Rightarrow constraints on new physics (in progress).
- Oscillation frequencies for $B_{(s)}$ mesons:

$$\Delta M_d^{\text{SM}} = 0.639(50)(36)(5)(13) \text{ ps}^{-1} \qquad \Delta M_d^{\text{expt}} = (0.5055 \pm 0.0020) \text{ ps}^{-1}$$
$$\Delta M_s^{\text{SM}} = 19.8(1.1)(1.0)(0.2)(0.4) \text{ ps}^{-1} \qquad \Delta M_s^{\text{expt}} = (17.757 \pm 0.021) \text{ ps}^{-1}$$
$$\Delta M_d^{\text{SM}} = 0.0323(9)(9)(0)(3)$$

using tree-level inputs for CKM factors in SM formula.

- These amount to discrepancies of 2.1σ , 1.3σ , and 2.9σ , respectively.
- Alternatively, stronger constraint on CKM unitarity triangle.

CKM Unitarity Triangle 2016

• Using Fermilab/MILC results for $B_{(s)}$ -mixing [arXiv:1602.03560] and for V_{cb} [arXiv:1403.0635, arXiv:1503.07237] & V_{ub} [arXiv:1503.07839].

Summary & Outlook

- Fermilab/MILC and ETM errors for *D* mixing suffice until longdistance parts become available.
- Fermilab/MILC results for $B_{(s)}$ mixing:
 - treat wrong-spin contributions rigorously;
 - have overall error significantly smaller than earlier work;

• but need sub-% to match $B_{(s)}$ mixing experiments.

Backup

Bag Factors

$$\begin{split} \langle \bar{B}^{0} | \mathscr{O}_{1} | B^{0} \rangle &= \frac{2}{3} f_{B}^{2} M_{B}^{2} B_{B}^{(1)} \\ \langle \bar{B}^{0} | \mathscr{O}_{2} | B^{0} \rangle &= -\frac{5}{12} \left(\frac{M_{B}}{m_{b}(\mu) + m_{q}(\mu)} \right)^{2} f_{B}^{2} M_{B}^{2} B_{B}^{(2)} \\ \langle \bar{B}^{0} | \mathscr{O}_{3} | B^{0} \rangle &= \frac{1}{12} \left(\frac{M_{B}}{m_{b}(\mu) + m_{q}(\mu)} \right)^{2} f_{B}^{2} M_{B}^{2} B_{B}^{(3)} \\ \langle \bar{B}^{0} | \mathscr{O}_{4} | B^{0} \rangle &= \left[\frac{1}{12} + \frac{1}{2} \left(\frac{M_{B}}{m_{b}(\mu) + m_{q}(\mu)} \right)^{2} \right] f_{B}^{2} M_{B}^{2} B_{B}^{(4)} \\ \langle \bar{B}^{0} | \mathscr{O}_{5} | B^{0} \rangle &= \left[\frac{1}{4} + \frac{1}{6} \left(\frac{M_{B}}{m_{b}(\mu) + m_{q}(\mu)} \right)^{2} \right] f_{B}^{2} M_{B}^{2} B_{B}^{(5)} \end{split}$$