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Motivation

> Next generation particle physics projects dedicated to
measuring fundamental properties of neutrinos

» Precision measurement of 6,3, discovery of dcp
» Fermilab host to a number of neutrino experiments:
» DUNE, MicroBooNE, MINERvA, NOvA, SBND, ...
> To date, most experiments employ near/far detector paradigm

> New experiments will be more sensitive,
need more precise nuclear/nucleon cross sections
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Cross Sections

v, CC spectrum at 1300 km, Am?, = 2.4e-03 ev?

v, CC evts/GeV/10kUMW.yr

E, (GeV)

(Figure from LBNE, 1307.7335 [hep-ex]) Charge Current QE scattering

A A

» Measurements of neutrino parameters require precise

knowledge of cross sections

> Nuclear cross sections obtained using nucleon amplitudes

as input to nuclear models

» Uncertainty on Fa(Q?) is primary contribution to systematic errors

» Fiv, Foy known from e — p scattering
» Fp suppressed by lepton mass in cross sections

> Focus on Fp4, other form factors as consistency checks
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Dipole Form Factor

Neutrino community typically assumes dipole form factor:

8A
FaA(Q) = —=—5
A= T rmy
Introduced by Llewellyn-Smith in 1971 as an ansatz
Unmotivated in interesting energy range

= Uncontrolled systematics and underestimated uncertainties
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z-Expansion

The z-Expansion (1108.0423 [hep-ph]) is a conformal mapping which
takes the kinematically allowed region (t = —Q? < 0) to within |z| < 1
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» Model independent: motivated by analyticity arguments from QCD
» Only few parameters needed: unitarity bounds

» Successful in B-meson physics
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Deuterium Bubble Chamber - z Expansion

Analysis in Phys. Rev. D 93, 113015 (1603.03048 [hep-ph])
ASM, M. Betancourt, R. Gran, R. Hill

Reanalyzed deuterium bubble chamber data by replacing dipole
with z expansion framework

Form factor fit to BNL, ANL, FNAL data sets of ~ 1000 events
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—> Unfounded assumption of dipole form factor shape will
severely underestimate systematic uncertainties
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— A better determination of the form factor is needed
to build sensible nuclear models

— Lots of room for LQCD to make significant contributions to cross
section determinations essential for neutrino physics
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Fermilab Lattice/MILC Effort

We are calculating the axial form factor F4(Q?) using staggered quarks

>

on the MILC HISQ 2+1+1 gauge ensembles

no explicit chiral symmetry breaking in m — 0 limit
no exceptional configurations

physical pion mass at multiple lattice spacings
large volumes

exact renormalization

high-statistics (computationally fast)

Effort is needed to handle:

>

>

Complicated group theory

Lots of baryon tastes in correlation functions
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Gauge Ensembles

Lattice Extentvs Fion Mass

Pion Mass vs Lattice Spacing
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Current data:

> a=0.15 fm, 323 x 48 ensemble only

> Myalence = Mphysical

MelVev)

» ~ 1000 2-point measurements, ~ 500 3-point

10/20



Group Theory

>

>

>

Irreps of group (((Tm x Qg) x W3) x Dy)/Zs

Fermionic irreps: 8, 8', 16; Isospin: % %

Fundamental quark contained in the 8 representation,
where 8 operators correspond to the 8 unit cube corners

Because of symmetrization with taste quantum number, can
generate “nucleon-like” states with either choice of isospin

Number of different taste states in lowest-order (n = 0) multiplet:

lrrep || /=32 | 1=1
8 3N +2A | BN+ 1A
8’ ON+2A | ON+ 1A
16 || 1N +3A | 3N +4A
> | = %: Nops = Nstates,n:O
> | = %: Nops =2x Nstates,n:O

Can construct large operator basis of Ngps X Nops correlators
for each irrep, isospin;

—> always expect to extract all n = 0 states from variational method!
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2-Point Functions: Correlators
Nucleon 2-point function (N;|N;):
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Matrix of correlation functions shown (5 sources x 5 sinks)

v

—> Get good t range, at least up to t = 10

—> Wrong-parity oscillating states clearly visible
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2-Point Functions: Effective Mass

Effective mass as a demonstration

PRELIMINARY
=5 0 5 10 15 20 25

t

o

Effective mass prohibitively noisy at t = 10
Presence of wrong-parity (oscillating) excited state clearly visible

From effective mass alone, not clear that we could get a reliable spectrum
= can we benefit from using correlations?
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2-Point Functions: S/N Optimization

Optimize a metric related to the signal to noise by varying v, w to
visualize statisical power hidden in correlations:
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Resulting correlators are cleaner

= Statistical power hidden in correlations
= Oscillating states still visible, no choice but to do excited state fits
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2-Point Functions: Stability
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8 representation (3N + 2A) — 16 representation (1N 4 3A)
Fully correlated fit with Bayesian priors, many excited states

Using fit results from 8 representation as priors to fit to 16 representation
improves precision on mass determinations

8 w/ ON+2A — A mass, taste splitting
8 w/ 3N+2A — N mass, N — A mass splitting, better taste splitting
16 w/ 1N+43A

— “Golden channel”: precise measurement of nucleon properties
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3-Point Functions: Normalization of A, /Blinding

Calculate form factor:
(NZuA V)| en
0| Z4A, |72 f,
< | A u| > 4=0 T
Benefits from statistical cancellation, exact renormalization

Normalize with f; computed from MILC computation of f;,
Phys. Rev. D 90, 074509 (1407.3772 [hep-lat])

F4 at nonzero momentum computed as ratio of nuclear matrix elements:

(N(0)| ZaA1u(q) IN(q)) _ Fa(@®)
(N(0)| ZaA,(0) [N(0)) ga
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3-Point Functions: Blinding

Value of g4 well-known from neutron beta decay experiments

= Blinding implemented as a factor multiplying 3-point function

B (N(0)] ZaA,(q) IN(q)) ~ BFA(Q?)

Blinding known only to few members of collaboration, not to me
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3-Point Functions: First Look
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> raw 3-point functions have no visible plateau
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prominent oscillating states
errors improved by S/N optimization = strong correlations

many currents available (local, point split)
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Future Prospects

> 6x propagators for 32 x 48 lattice computed,
computation of tie-ups in progress

v

Still have not included pion 2-point function in ratio,
expect statistical cancellation to improve results

» Can disentangle more excited states than implied by
variational method alone

v

Have USQCD resources for inversions on
a = 0.12,0.09fm ensembles

v

Will compute full error budget for form factor
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Conclusions

Axial form factor is essential for the success of future
neutrino oscillation experiments

v

v

Staggered baryons have the potential to weigh in on ga puzzle

v

Preliminary data for 2- and 3-point functions have been calculated

v

Spectrum calculation for staggered baryons is feasible

v

We are optimistic that our ga calculation will be
competitive with other collaborations

Thank you for your attention!
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