Calculation of the Nucleon Axial Form Factor Using Staggered Lattice QCD

Aaron S. Meyer (asmeyer2012@uchicago.edu)
University of Chicago/Fermilab

July 28, 2016

People

Thesis advising: Richard Hill, Andreas Kronfeld
Also:
A. Bazavov, C. Bernard, N. Brown, C. DeTar, Daping Du, A. X. El-Khadra, E. D. Freeland, E. Gámiz, S. Gottlieb, U. M. Heller, J. Laiho, R. Li, P. B. Mackenzie, D. Mohler, C. Monahan, E. T. Neil, J. Osborn, T. Primer, J. Simone, R. Sugar, A. Strelchenko, D. Toussaint, R. S. Van de Water, A. Veernala, R. Zhou

Fermilab Lattice \& MILC Collaborations

Motivation

- Next generation particle physics projects dedicated to measuring fundamental properties of neutrinos
- Precision measurement of θ_{23}, discovery of $\delta_{C P}$
- Fermilab host to a number of neutrino experiments:
- DUNE, MicroBooNE, MINER ν A, NO νA, SBND, ...
- To date, most experiments employ near/far detector paradigm
- New experiments will be more sensitive, need more precise nuclear/nucleon cross sections

Cross Sections

(Figure from LBNE, 1307.7335 [hep-ex]) Charge Current QE scattering

- Measurements of neutrino parameters require precise knowledge of cross sections
- Nuclear cross sections obtained using nucleon amplitudes as input to nuclear models
- Uncertainty on $F_{A}\left(Q^{2}\right)$ is primary contribution to systematic errors
- $F_{1 v}, F_{2 v}$ known from $e-p$ scattering
- F_{P} suppressed by lepton mass in cross sections
- Focus on F_{A}, other form factors as consistency checks

Dipole Form Factor

Neutrino community typically assumes dipole form factor:

$$
F_{A}\left(Q^{2}\right)=\frac{g_{A}}{\left(1+Q^{2} / m_{A}^{2}\right)^{2}}
$$

Introduced by Llewellyn-Smith in 1971 as an ansatz
Unmotivated in interesting energy range
\Longrightarrow Uncontrolled systematics and underestimated uncertainties

z-Expansion

The z-Expansion (1108.0423 [hep-ph]) is a conformal mapping which takes the kinematically allowed region $\left(t=-Q^{2} \leq 0\right)$ to within $|z|<1$

$$
z\left(t ; t_{0}, t_{c}\right)=\frac{\sqrt{t_{c}-t}-\sqrt{t_{c}-t_{0}}}{\sqrt{t_{c}-t}+\sqrt{t_{c}-t_{0}}} \quad F_{A}(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \quad t_{c}=9 m_{\pi}^{2}
$$

- Model independent: motivated by analyticity arguments from QCD
- Only few parameters needed: unitarity bounds
- Successful in B-meson physics

Deuterium Bubble Chamber - z Expansion

Analysis in Phys. Rev. D 93, 113015 (1603.03048 [hep-ph])
ASM, M. Betancourt, R. Gran, R. Hill
Reanalyzed deuterium bubble chamber data by replacing dipole with z expansion framework

Form factor fit to BNL, ANL, FNAL data sets of ~ 1000 events

\Longrightarrow Unfounded assumption of dipole form factor shape will severely underestimate systematic uncertainties
$\Longrightarrow A$ better determination of the form factor is needed to build sensible nuclear models
\Longrightarrow Lots of room for LQCD to make significant contributions to cross section determinations essential for neutrino physics

Fermilab Lattice/MILC Effort

We are calculating the axial form factor $F_{A}\left(Q^{2}\right)$ using staggered quarks on the MILC HISQ $2+1+1$ gauge ensembles

- no explicit chiral symmetry breaking in $m \rightarrow 0$ limit
- no exceptional configurations
- physical pion mass at multiple lattice spacings
- large volumes
- exact renormalization
- high-statistics (computationally fast)

Effort is needed to handle:

- Complicated group theory
- Lots of baryon tastes in correlation functions

Gauge Ensembles

Current data:

- $a=0.15 \mathrm{fm}, 32^{3} \times 48$ ensemble only
- $m_{\text {valence }}=m_{\text {physical }}$
- ~1000 2-point measurements, ~ 500 3-point

Group Theory

- Irreps of group $\left(\left(\left(\mathcal{T}_{M} \times \mathcal{Q}_{8}\right) \rtimes W_{3}\right) \times D_{4}\right) / \mathbb{Z}_{2}$
- Fermionic irreps: 8, 8', 16; Isospin: $\frac{3}{2}, \frac{1}{2}$
- Fundamental quark contained in the 8 representation, where 8 operators correspond to the 8 unit cube corners
- Because of symmetrization with taste quantum number, can generate "nucleon-like" states with either choice of isospin

Number of different taste states in lowest-order $(n=0)$ multiplet:

Irrep	$I=\frac{3}{2}$	$I=\frac{1}{2}$
8	$3 N+2 \Delta$	$5 N+1 \Delta$
8^{\prime}	$0 N+2 \Delta$	$0 N+1 \Delta$
16	$1 N+3 \Delta$	$3 N+4 \Delta$

- $I=\frac{3}{2}: N_{\text {ops }}=N_{\text {states }, n=0}$
- $I=\frac{1}{2}: N_{\text {ops }}=2 \times N_{\text {states }, n=0}$

Can construct large operator basis of $N_{\text {ops }} \times N_{\text {ops }}$ correlators for each irrep, isospin;
\Longrightarrow always expect to extract all $n=0$ states from variational method!

2-Point Functions: Correlators

Nucleon 2-point function $\left\langle N_{i} \mid N_{j}\right\rangle$:

Matrix of correlation functions shown (5 sources $\times 5$ sinks)
\Longrightarrow Get good t range, at least up to $t=10$
\Longrightarrow Wrong-parity oscillating states clearly visible

2-Point Functions: Effective Mass

Effective mass as a demonstration

Effective mass prohibitively noisy at $t=10$
Presence of wrong-parity (oscillating) excited state clearly visible
From effective mass alone, not clear that we could get a reliable spectrum \Longrightarrow can we benefit from using correlations?

2-Point Functions: S/N Optimization

Optimize a metric related to the signal to noise by varying v, w to visualize statisical power hidden in correlations:

$$
\frac{S^{2}}{N^{2}}=\sum_{i i} \sum_{t=t_{\text {min }}}^{t_{\text {max }}} \frac{\left[v_{i} C_{i j}(t) w_{j}\right]^{2}}{\delta\left[v_{i} C_{i j}(t) w_{j}\right]^{2}}
$$

unoptimized

optimized

Resulting correlators are cleaner
\Longrightarrow Statistical power hidden in correlations
\Longrightarrow Oscillating states still visible, no choice but to do excited state fits̄

2-Point Functions: Stability

8 representation $(3 N+2 \Delta)$

$\rightarrow \quad 16$ representation $(1 N+3 \Delta)$

Fully correlated fit with Bayesian priors, many excited states
Using fit results from 8 representation as priors to fit to 16 representation improves precision on mass determinations
$8^{\prime} \quad \mathrm{w} / \quad 0 N+2 \Delta \rightarrow \Delta$ mass, taste splitting
$8 \mathrm{w} / 3 N+2 \Delta \rightarrow N$ mass, $N-\Delta$ mass splitting, better taste splitting
$16 \mathrm{w} / 1 N+3 \Delta$
\rightarrow "Golden channel": precise measurement of nucleon properties

3-Point Functions: Normalization of $A_{\mu} /$ Blinding

Calculate form factor:

$$
\left.\frac{\langle N| Z_{A} A_{\mu}|N\rangle}{\langle 0| Z_{A} A_{\mu}\left|\pi^{2}\right\rangle}\right|_{q=0} \propto \frac{g_{A}}{f_{\pi}}
$$

Benefits from statistical cancellation, exact renormalization
Normalize with f_{π} computed from MILC computation of f_{π}, Phys. Rev. D 90, 074509 (1407.3772 [hep-lat])
F_{A} at nonzero momentum computed as ratio of nuclear matrix elements:

$$
\frac{\langle N(0)| Z_{A} A_{\perp \mu}(q)|N(q)\rangle}{\langle N(0)| Z_{A} A_{\mu}(0)|N(0)\rangle} \propto \frac{F_{A}\left(Q^{2}\right)}{g_{A}}
$$

3-Point Functions: Blinding

Value of g_{A} well-known from neutron beta decay experiments
\Longrightarrow Blinding implemented as a factor multiplying 3-point function

$$
\beta\langle N(0)| Z_{A} A_{\mu}(q)|N(q)\rangle \sim \beta F_{A}\left(Q^{2}\right)
$$

Blinding known only to few members of collaboration, not to me

3-Point Functions: First Look

- raw 3-point functions have no visible plateau
- prominent oscillating states
- errors improved by S / N optimization \Longrightarrow strong correlations
- many currents available (local, point split)

Future Prospects

- $6 \times$ propagators for 32×48 lattice computed, computation of tie-ups in progress
- Still have not included pion 2-point function in ratio, expect statistical cancellation to improve results
- Can disentangle more excited states than implied by variational method alone
- Have USQCD resources for inversions on $a=0.12,0.09 \mathrm{fm}$ ensembles
- Will compute full error budget for form factor

Conclusions

- Axial form factor is essential for the success of future neutrino oscillation experiments
- Staggered baryons have the potential to weigh in on g_{A} puzzle
- Preliminary data for 2- and 3-point functions have been calculated
- Spectrum calculation for staggered baryons is feasible
- We are optimistic that our g_{A} calculation will be competitive with other collaborations

Thank you for your attention!

