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Motivation

I Next generation particle physics projects dedicated to
measuring fundamental properties of neutrinos

I Precision measurement of θ23, discovery of δCP

I Fermilab host to a number of neutrino experiments:
I DUNE, MicroBooNE, MINERνA, NOνA, SBND, . . .

I To date, most experiments employ near/far detector paradigm
I New experiments will be more sensitive,

need more precise nuclear/nucleon cross sections
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Cross Sections
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(Figure from LBNE, 1307.7335 [hep-ex]) Charge Current QE scattering

I Measurements of neutrino parameters require precise
knowledge of cross sections

I Nuclear cross sections obtained using nucleon amplitudes
as input to nuclear models

I Uncertainty on FA(Q2) is primary contribution to systematic errors
I F1V , F2V known from e − p scattering
I FP suppressed by lepton mass in cross sections

I Focus on FA, other form factors as consistency checks
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Dipole Form Factor

Neutrino community typically assumes dipole form factor:

FA(Q2) = gA

(1 + Q2/m2
A)2

Introduced by Llewellyn-Smith in 1971 as an ansatz

Unmotivated in interesting energy range

=⇒ Uncontrolled systematics and underestimated uncertainties
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z-Expansion
The z-Expansion (1108.0423 [hep-ph]) is a conformal mapping which
takes the kinematically allowed region (t = −Q2 ≤ 0) to within |z | < 1

z(t; t0, tc) =
√

tc − t −
√

tc − t0√
tc − t +

√
tc − t0

FA(z) =
∞∑

n=0
anzn tc = 9m2

π

I Model independent: motivated by analyticity arguments from QCD
I Only few parameters needed: unitarity bounds
I Successful in B-meson physics
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Deuterium Bubble Chamber - z Expansion
Analysis in Phys. Rev. D 93, 113015 (1603.03048 [hep-ph])

ASM, M. Betancourt, R. Gran, R. Hill

Reanalyzed deuterium bubble chamber data by replacing dipole
with z expansion framework

Form factor fit to BNL, ANL, FNAL data sets of ∼ 1000 events
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=⇒ Unfounded assumption of dipole form factor shape will
severely underestimate systematic uncertainties
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=⇒ A better determination of the form factor is needed
to build sensible nuclear models

=⇒ Lots of room for LQCD to make significant contributions to cross
section determinations essential for neutrino physics
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Fermilab Lattice/MILC Effort

We are calculating the axial form factor FA(Q2) using staggered quarks
on the MILC HISQ 2+1+1 gauge ensembles

I no explicit chiral symmetry breaking in m→ 0 limit
I no exceptional configurations
I physical pion mass at multiple lattice spacings
I large volumes
I exact renormalization
I high-statistics (computationally fast)

Effort is needed to handle:
I Complicated group theory
I Lots of baryon tastes in correlation functions
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Gauge Ensembles

Current data:
I a = 0.15 fm, 323 × 48 ensemble only
I mvalence = mphysical

I ∼ 1000 2-point measurements, ∼ 500 3-point
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Group Theory
I Irreps of group (((TM ×Q8) o W3)× D4)/Z2

I Fermionic irreps: 8, 8′, 16; Isospin: 3
2 , 1

2
I Fundamental quark contained in the 8 representation,

where 8 operators correspond to the 8 unit cube corners
I Because of symmetrization with taste quantum number, can

generate “nucleon-like” states with either choice of isospin

Number of different taste states in lowest-order (n = 0) multiplet:
Irrep I = 3

2 I = 1
2

8 3N + 2∆ 5N + 1∆
8′ 0N + 2∆ 0N + 1∆
16 1N + 3∆ 3N + 4∆

I I = 3
2 : Nops = Nstates,n=0

I I = 1
2 : Nops = 2× Nstates,n=0

Can construct large operator basis of Nops × Nops correlators
for each irrep, isospin;

=⇒ always expect to extract all n = 0 states from variational method! 11 / 20



2-Point Functions: Correlators
Nucleon 2-point function 〈Ni |Nj〉:

PRELIMINARY
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Matrix of correlation functions shown (5 sources × 5 sinks)

=⇒ Get good t range, at least up to t = 10

=⇒ Wrong-parity oscillating states clearly visible
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2-Point Functions: Effective Mass

Effective mass as a demonstration

PRELIMINARY

Effective mass prohibitively noisy at t = 10

Presence of wrong-parity (oscillating) excited state clearly visible

From effective mass alone, not clear that we could get a reliable spectrum
=⇒ can we benefit from using correlations?
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2-Point Functions: S/N Optimization
Optimize a metric related to the signal to noise by varying v, w to
visualize statisical power hidden in correlations:

S2

N2 =
∑

ij

tmax∑
t=tmin

[v iCij(t)w j ]2

δ [v iCij(t)w j ]2

PRELIMINARY PRELIMINARY

unoptimized optimized
Resulting correlators are cleaner

=⇒ Statistical power hidden in correlations
=⇒ Oscillating states still visible, no choice but to do excited state fits 14 / 20



2-Point Functions: Stability

PRELIMINARY PRELIMINARY

8 representation (3N + 2∆) → 16 representation (1N + 3∆)

Fully correlated fit with Bayesian priors, many excited states

Using fit results from 8 representation as priors to fit to 16 representation
improves precision on mass determinations

8′ w/ 0N + 2∆→ ∆ mass, taste splitting
8 w/ 3N + 2∆→ N mass, N −∆ mass splitting, better taste splitting
16 w/ 1N + 3∆
→ “Golden channel”: precise measurement of nucleon properties
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3-Point Functions: Normalization of Aµ/Blinding

Calculate form factor:

〈N|ZAAµ |N〉
〈0|ZAAµ |πa〉

∣∣∣∣∣
q=0

∝ gA
fπ

Benefits from statistical cancellation, exact renormalization

Normalize with fπ computed from MILC computation of fπ,
Phys. Rev. D 90, 074509 (1407.3772 [hep-lat])

FA at nonzero momentum computed as ratio of nuclear matrix elements:

〈N(0)|ZAA⊥µ(q) |N(q)〉
〈N(0)|ZAAµ(0) |N(0)〉 ∝

FA(Q2)
gA
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3-Point Functions: Blinding

Value of gA well-known from neutron beta decay experiments

=⇒ Blinding implemented as a factor multiplying 3-point function

β 〈N(0)|ZAAµ(q) |N(q)〉 ∼ βFA(Q2)

Blinding known only to few members of collaboration, not to me
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3-Point Functions: First Look

optimize: S2

N2 =
∑

ij

t−1∑
τ=1

[v iCij(τ, t)w j ]2

δ [v iCij(τ, t)w j ]2

PRELIMINARY PRELIMINARY

raw correlator → optimized correlator
I raw 3-point functions have no visible plateau
I prominent oscillating states
I errors improved by S/N optimization =⇒ strong correlations
I many currents available (local, point split)
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Future Prospects

I 6× propagators for 32× 48 lattice computed,
computation of tie-ups in progress

I Still have not included pion 2-point function in ratio,
expect statistical cancellation to improve results

I Can disentangle more excited states than implied by
variational method alone

I Have USQCD resources for inversions on
a = 0.12, 0.09fm ensembles

I Will compute full error budget for form factor
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Conclusions

I Axial form factor is essential for the success of future
neutrino oscillation experiments

I Staggered baryons have the potential to weigh in on gA puzzle
I Preliminary data for 2- and 3-point functions have been calculated
I Spectrum calculation for staggered baryons is feasible
I We are optimistic that our gA calculation will be

competitive with other collaborations

Thank you for your attention!
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