Stochastic reconstruction of charmonium spectral functions at finite temperature

Hiroshi Ohno^{1,2}

in collaboration with

H.-T. Ding³, O. Kaczmarek⁴, Swagato Mukherjee² and H.-T. Shu³

¹CCS, University of Tsukuba, ²Brookhaven National Laboratory, ³Central China Normal University, ⁴Bielefeld University

Lattice 2016

University of Southampton, Southampton, UK, July 28, 2016

Motivation

- Charmonium spectral function (SPF)
 - has all information about in-medium properties of charmonia

H. Ohno Lattice 2016

Recent lattice studies on charmonium SPF

H.-T. Ding et al., PRD 86 (2012) 014509 Several studies both in quenched QCD and ullet $\rho(\omega)/\omega^2$ 0.73 T_c with dynamical quarks, using MEM (Maximum Entropy Method) 1.46 T_c 2.20 T_c Dissociation temperatures are still not conclusive 0.8 2.93 T_c The heavy quark diffusion coefficient has 0.6 been computed A. Francis, O. Kaczmarek, M. Laine, T. Neuhaus 0.4 and HO, PRD 92 (2015) no.11, 116003 H.-T. Ding et al., PRD 86 (2012) 014509 $T \sim 1.5 T_{-}$ 0.2 2πTD BGM ω [GeV] $\kappa = 2T^2/D$ 3.5 3a 2Bb 3 9 3 2Ba 2.5 ¹ep 2αb 2αa Perturbative estimate 2 $2\pi DT \approx 71.2$ in LO 1_{βb} 1.5 Moore and Teaney, PRD 71 (2005) 1_{Ba} 1 $1\alpha b$ 064904 strategy (i) strategy (ii) 0.5 1αa $2\pi DT \approx 8.4$ in NLO Т/Тс Caron-Hout and Moore, PRL 100 (2008) 26 28 14 16 18 2.2 24 2 052301 Heavy guark EFT: Quenched QCD: Strong coupling limit the only continuum result so far, no continuum limit, with MEM 2πDT ≈ 1 based on theoretically motivated fits 2πTD ≈ 2 Kovtun, Son and Starinets, JHEP 0310 $\kappa/T^3 = 1.8 - 3.4 \rightarrow 2\pi TD = 3.7 - 7.0$ (2004) 064

It is important to crosscheck previous results with more precise SPFs given on larger and finer lattice and by different methods.

H. Ohno Lattice 2016

Reconstruction of SPF

- Computing SPF → Ill-posed problem
 - # of data points of a correlator is O(10) while a SPF needs O(1000) data points.
 - In general, simple χ^2 fitting does not work!
- Several ways to reconstruct SPF
 - MEM M. Asakawa, T. Hatsuda and Y. Nakahara, Prog.Part.Nucl.Phys. 46 (2001) 459-508
 - A new Bayesian method

Stochastic methods

H. Ohno Lattice 2016 Y. Burnier and A. Rothkopf, PRL 111 (2013) 18, 182003

→ our approach

(See also H.-T. Shu's talk [Thu. 7/28 @ 14:40])

Stochastic method: comparison with MEM

MEM

Most likely solution

 $\max P[A|\bar{G}] \leftrightarrow \min F \leftrightarrow \frac{\delta F}{\delta A} = 0$ where

$$P[A|\bar{G}] \propto e^{-F} \quad F \equiv \chi^2/2 - \alpha S$$

Prior information

 $S \equiv -\int d\omega \ A(\omega) \ln\left(\frac{A(\omega)}{D(\omega)}\right)$

• Eliminating α $P[\alpha|\bar{G}] \propto P[\alpha] \int \mathcal{D}A \ e^{-F[A]}$ where $P[\alpha] = 1, \ 1/\alpha$

$$\langle A(\omega) \rangle = \int d\alpha A_{\alpha}(\omega) P[\alpha|\bar{G}]$$

H. Ohno Lattice 2016

Stochastic methods

• **Most likely solution** $\mathcal{D}'n \equiv \mathcal{D}n \Theta[n]\delta\left(\int dx n(x) - \bar{G}(\tau_0)\right)$ Stochastically evaluate

$$\langle n(x) \rangle_{\alpha} = \int \mathcal{D}' n \ n(x) e^{-\chi^2/2\alpha} \quad \text{for } n(x) \equiv \frac{A(\phi^{-1}(x))}{D(\phi^{-1}(x))}$$

SAI (Stochastic Analytical Inference)

S. Fuchs *et al.*, PRE81, 056701 (2010) HO, POS LATTICE 2015, 175 (2016)

Prior information

$$x \equiv \phi(\omega) = \frac{1}{N} \int_{-\infty}^{\omega} d\omega' D(\omega')$$

• Basis δ functions

• Eliminating α $P[n|\bar{G}] \propto P[\alpha] \int \mathcal{D}' n \ e^{-\chi^2[n]/2\alpha}$ $\Rightarrow \langle \langle n(x) \rangle \rangle = \int d\alpha \langle n(x) \rangle_{\alpha} P[n|\bar{G}]$ SOM (Stochastic Optimization Method)

A. S. Mishchenko *et al.,* PRB62, 6317 (2000) H.-T. Shu *et al,* PoS LATTICE 2015, 180 (2016)

Prior information

None ($x = \omega$)

dose not rely on DM!

• Basis Boxes

• Eliminating α Choosing α at a critical point of $\langle \chi^2 \rangle_{\alpha}$

Lattice setup

- Standard plaquette gauge action + O(a)-improved Wilson valence quarks
- In the quenched approximation
- On fine and large isotropic lattices
 - $\beta = 7.793 \rightarrow a = 0.009 \text{ fm } (a^{-1} = 22 \text{ GeV})$ $N_{\sigma} = 192$ The scale has been set by r₀=0.49 fm and with an interpolation for r₀/a in A. Francis, O. Kaczmarec, M. Laine, T. Neuhaus, HO, PRD 91 (2015) 9, 096002
 - $-N_{\tau} = 96, 48 \rightarrow T = 0.75, 1.5T_{c}$
 - − $\kappa = 0.13211 \rightarrow m_V = 3.234(9) \text{ GeV}$ Experimental values: $m_{J/\Psi} = 3.096.916(11) \text{ GeV}$ J. Beringer *et al.* [PDG], PRD 86 (2012) 010001
- Vector channel

Normalization and relation btw SAI and SOM

• Normalization (to cure divergence of $K(\omega,\tau)$ at $\omega = 0$)

$$A(\omega) = \rho(\omega) K(\omega, \tau_0)$$
$$D'(\omega) = D(\omega) K(\omega, \tau_0)$$
$$\tilde{K}(\omega, \tau) \equiv \frac{K(\omega, \tau)}{K(\omega, \tau_0)} = \frac{\cosh\left[\omega(\tau - 1/2T)\right]}{\cosh\left[\omega(\tau_0 - 1/2T)\right]}$$

 $\tau_0/a = 4$ is chosen to eliminate cutoff effects

SOM is equivalent to SAI with

$$D'(\omega) = 1 \implies D(\omega) = K^{-1}(\omega, \tau_0)$$

Default models

• Resonance (Res)

$$\rho(\omega) = \frac{\Gamma M}{(\omega^2 - M^2)^2 + M^2 \Gamma^2} \frac{\omega^2}{\pi}$$

$$\Gamma = \Theta(\omega - \omega_0)\gamma_0 \left(1 - \frac{\omega_0^2}{\omega^2}\right)^5$$

• Transport peak (Trans)

$$\rho(\omega) = \frac{\omega\eta}{\omega^2 + \eta^2}$$

• Free Wilson (Free)

$$\rho(\omega) = \frac{N_c}{L^3} \sum_{\boldsymbol{k}} \sinh\left(\frac{\omega}{2T}\right) \begin{bmatrix} b^{(1)} - b^{(2)} \frac{\sum_{i=1}^3 \sin^2 k_i}{\sinh^2 E_{\boldsymbol{k}}(m)} \end{bmatrix} & \cosh E_{\boldsymbol{k}}(m) = 1 + \frac{\mathcal{K}_{\boldsymbol{k}} + \mathcal{M}_{\boldsymbol{k}}(m)}{2(1 + \mathcal{M}_{\boldsymbol{k}}(m))} \\ & \mathcal{K}_{\boldsymbol{k}} = \sum_{i=1}^3 \gamma_i \sin k_i \\ & \mathcal{K}_{\boldsymbol{k}}(m) = \sum_{i=1}^3 (1 - \cos k_i) + m \end{bmatrix}$$

 $b^{(1)} = 3$, $b^{(2)} = 1$ for the V channel

H. Ohno Lattice 2016 Stochastic reconstruction of charmonium spectral functions at finite temperature

 $\mathcal{K}^2 \perp \mathcal{M}^2(m)$

Comparison between SAI and SOM at 0.757_c

The SOM result is almost consistent with the SAI result with $D(\omega) = K^{-1}(\omega, \tau_0)$.

H. Ohno Lattice 2016

Default model dependence at 0.757_c (1)

DM = Free, ω^2 , Res1 + Free, Res2 + Free Res1 : peak location ~ J/ Ψ mass Res2 : peak location < J/ Ψ mass

SAI and MEM have weak DM dependence except for $D(\omega) \sim \omega^2$ for MEM.

H. Ohno Lattice 2016

Default model dependence at 0.75*T*_c (2)

DM = Trans + Free, ω^2 , Trans + Res1 + Free The high ω part is insensitive to the transport peak of DM. The intercept is quite small.

H. Ohno Lattice 2016

Systematic uncertainties at 0.757_c

! The D(ω)~ ω^2 case for MEM is omitted. ! ω [GeV]

The first peak is stable. $\rightarrow J/\Psi$ exists.

H. Ohno Lattice 2016

Comparison between SAI and SOM at 1.57_c

The SOM result is almost consistent with the SAI result with $D(\omega) = K^{-1}(\omega, \tau_0)$ The intercept = $2\pi TD$ is very small

Default model dependence at 1.57_c (1)

DM = Free, ω^2 , Trans1 + Res1 + Free, Trans1 + Res2 + Free Trans1 $\rightarrow 2\pi$ TD=1 There is no clear peak around J/ Ψ , except for Trans+Res1+Free DM result for SAI. The intercept is quite small for SAI. ω^2 DM result for MEM has strange behavior.

H. Ohno Lattice 2016

Default model dependence at 1.57_c (2)

DM = Trans(1-4) + Free Trans(1-4) $\rightarrow 2\pi TD \sim 1, 2, 4, 9$ (fixed width) There is no clear peak around J/ Ψ . The intercept seems to have an upper bound. The intercept for SAI $\rightarrow 2\pi TD \sim 1.5$, for MEM $\rightarrow 2\pi TD \sim 2$

H. Ohno Lattice 2016

Systematic uncertainties at 1.57_c

! The $D(\omega) \sim \omega^2$ case for MEM is omitted. !

Melting of J/ Ψ is not conclusive so far, although most of the cases in our analysis suggests no clear J/ Ψ peak.

There seems to be an upper bound of $2\pi TD$, which is 1.5—2 in this study, while a lower bound is not clear.

H. Ohno Lattice 2016

Summary & outlook

- We investigated vector charmonium SPFs
 - on very large and fine quenched lattices
 - with both MEM and stochastic methods (SAI and SOM)
 - at $0.75T_c$ and $1.5T_c$
- Both MEM and the stochastic methods gave almost DM-independent stable SPFs having a clear bound state peak at $0.75T_c$.
- Most of the results suggest that J/ Ψ may be melted around 1.5 T_c but more detailed study is needed to conclude.
- So far we observed an upper bound of $2\pi TD$, which is 1.5 2 at $1.5T_c$ in this preliminary study.
- Work in progress:
 - further checks of the DM-dependence and other systematic uncertainties
 - analysis of the temperature and quark mass dependence as well as other channels
 - continuum extrapolation

H. Ohno Lattice 2016

End

Backup slides

Stochastic method: basic idea

For given α (fictitious temperature, regularization parameter),

1. generate SPFs stochastically

Lattice 2016

2. average over all possible spectra

spectral functions at finite temperature

Stochastic method: basis

Update schemes which change the number of the basis are also possible.

H. Ohno Lattice 2016

Stochastic method: default model

K.S.D. Beach, arXiv:cond-mat/0403055

$$x \equiv \phi(\omega) = \frac{1}{N} \int_{-\infty}^{\omega} d\omega' D(\omega')$$

$$D(\omega) : \text{Default model (prior information)}$$

$$G(\tau) = \int d\omega A(\omega) \tilde{K}(\omega, \tau)$$

$$= \int dx n(x) \tilde{K}(\phi^{-1}(x), \tau)$$

$$n(x) \equiv \frac{A(\phi^{-1}(x))}{D(\phi^{-1}(x))}$$

$$\bar{G}(\tau_0) - \int dx n(x) = 0$$

$$\langle A(\omega) \rangle_{\alpha} = \langle n(\phi(\omega)) \rangle_{\alpha} D(\omega)$$

H. Ohno Lattice 2016 Stochastic reconstruction of charmonium spectral functions at finite temperature

 $d\omega \ A(\omega)\tilde{K}(\omega,\tau)$

 $dx \ n(x)\tilde{K}(\phi^{-1}(x),\tau)$

Stochastic method: comparison with MEM(1)

Maximum entropy method (MEM)

$$F \equiv \chi^2/2 - \alpha S \qquad S \equiv -\int d\omega \ A(\omega) \ln\left(\frac{A(\omega)}{D(\omega)}\right): \text{ entropy}$$
Minimizing F

$$\frac{\delta F}{\delta A}\Big|_{A=\bar{A}} = 0 \quad \Longrightarrow \quad \bar{A}(\omega): \text{ the most likely solution}$$

Stochastic method K.S.D. Beach, arXiv:cond-mat/0403055

$$H[n] \equiv \chi^2 = \int dx \ \epsilon(x) n(x) + \frac{1}{2} \int dx dy V(x, y) n(x) n(y) : \text{Hamiltonian}$$

Mean filed treatment

$$(n(x) - \bar{n}(x))(n(y) - \bar{n}(y)) \approx 0 \implies \bar{A}(\omega) = \bar{n}(\phi(\omega))D(\omega)$$

H. Ohno Lattice 2016

Stochastic method: comparison with MEM(1)

H. Ohno Lattice 2016

Stochastic method: comparison with MEM(2)

S. Fuchs et al., PRE81, 056701 (2010)

 MEM $P[A|\bar{G}] = \frac{P[\bar{G}|A]P[A]}{P[\bar{G}]}$

- Prior probability $P[A] \propto \exp(\alpha S)$
- Likelihood function $P[\bar{G}|A] \propto \exp\left(-\chi^2/2
 ight)$
- Posterior probability $P[A|\bar{G}] \propto e^{-F}$

$$\implies \max P[A|\bar{G}] \leftrightarrow \min F \leftrightarrow \frac{\delta F}{\delta A} = 0$$

Stochastic method $P[n|\bar{G}] = \frac{P[\bar{G}|n]P[n]}{P[\bar{G}]}$

- Prior probability $P[n] \propto \Theta[n] \delta\left(\int dx \ n(x) - \bar{G}(\tau_0)\right)$
- Likelihood function $P[\bar{G}|n] \propto \exp\left(-\chi^2/2\alpha\right)$
- Posterior probability $P[n|\bar{G}] = \Theta[n]\delta\left(\int dx \ n(x) - \bar{G}(\tau_0)\right)e^{-\chi^2/2\alpha}$ $\Longrightarrow \ \langle n(x)\rangle_{\alpha} = \int \mathcal{D}n \ n(x)P[n|\bar{G}]$

H. Ohno Lattice 2016

Stochastic method: eliminating α

(a) By using the posterior probability $P[\alpha|\bar{G}]$ $P[\alpha|\overline{G}] \propto P[\alpha] \int DA \ e^{-\chi^2/2\alpha} \quad P[\alpha] = 1, \ 1/\alpha$ Choosing α at the peak location of $P[\alpha|\bar{G}]$ or Taking average $\langle\langle A(\omega)\rangle\rangle \equiv \int d\alpha \ \langle A(\omega)\rangle_{\alpha}P[\alpha|\bar{G}]$

(b) By using the log-log plot of α vs < χ^2 >

Flat region at large α : default model dominant Crossover region: both χ^2 -fitting and the default model are important Flat region at small α : χ^2 -fitting dominant, overfitting

Choosing α at the kink of ln< χ^2 >

K.S.D. Beach, arXiv:cond-mat/0403055