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Motivation

GOAL: Calculate D → K(π)`ν semileptonic form factors f+(q2 = 0) for the purpose
of determining the CKM matrix elements |Vcs(d)|:

I Requires a combination of lattice and experimental results.

I In leptonic decays lattice errors are smaller than experimental ones.

I In semileptonic decays, it is the other way around, as shown.
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Comparison of contributions to |Vcs | errors from the leading leptonic decay1

and semileptonic decay2 determinations. Radius is proportional to total error.
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Calculation Method

Vector form factor f+(q2) defined via vector current Vµ = q̄γµc,

〈K |Vµ|D〉 = f+(q2)

[
pµD + pµK −

M2
D −M2

K

q2
qµ

]
+ f0(q2)

M2
D −M2

K

q2
qµ. (1)

We instead calculate the scalar current S = q̄c,

〈K |S|D〉 =
M2

D −M2
K

mc −ms
f0(q2), (2)

I With staggered quarks the local scalar current yields an absolutely normalized f0.

I Kinematic constraint requires that f+(0) = f0(0).

I This approach of using the scalar current was introduced by HPQCD1.

1HPQCD Phys.Rev.D82, 114506, (2010) [arXiv:1008.4562v2]



Simulation Details

I MILC 2 + 1 + 1 flavor HISQ
ensembles.

I Light, strange and charm
valence quarks also use the
HISQ action.

I Inner symbols radius indicates
Nconf .

I Outer symbol radius indicates
Nconf ×Ntsrc which is at least
3000 for each ensemble.

I MπL > 3.5 for all ensembles.

I The 0.06 fm, 0.2 ms

ensemble is new since last
year.
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Correlators

We employ twisted boundary conditions1,2,3 in order to reach q2 = 0 kinematics.

I Required momentum determined via q2 = M2
K + M2

D − 2EKMD and the

dispersion relation EK =
√

M2
K + p2.

I Momentum up to integer multiples of 2π/L come from the usual Fourier
transform.

I The rest comes from a twist of θ in each spatial direction giving ~p = θ π
L

(1, 1, 1).

I For D → K and D → π the momenta required to have q2 = 0 are large.

I On the lattice the dispersion relation is not exact, with violations expected to
scale with α2

s (ap)2.

1P. F. Bedaque, J.-W. Chen, Phys. Lett. B 616, 208-214 (2005) [hep-lat/0412023]
2C. T. Sachrajda and G. Villadoro, Phys. Lett. B 609, 73 (2005) [hep-lat/0411033]
3A. Bazavov et al., Phys. Rev. Lett. 112, no. 11, 112001 (2014) [arXiv:1312.1228]



Correlators

The diagram below describes the structure of our three-point correlators.

I Non-zero twist is given only to the daughter quark (~θ2).
I Putting some or all of the momentum on the D meson is possible but was found

to lead to much larger statistical errors.
I 5 different external source times (T) for each three-point correlator.
I Also calculate two-point kaons and pions with and without momentum and D

mesons with no momentum only.

S(tsource + t)

D(tsource + T )K, π(tsource)

q(~θ0 = 0)

c(~θ1 = 0)s, q(~θ2)

random wall



Correlator Fitting procedure
Two-point correlators are fit to a multi-state fit function:

CP(t) =

Nexp∑
j

(aPj )2(e−EP
j t + e−EP

j (Nt−t))−
Nexp∑
k

(−1)t(bPk )2(e−E ′P
k t + e−E ′P

k (Nt−t)) (3)

I Nexp is increased until the fit result becomes stable.

I Fit tmin taken as earliest choice with a good p-value and consistent fit result.

I Fit tmax is chosen as late as possible while there is good signal (< 30% error).

I Bayesian priors with broad widths are used to help fit stability only.
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Pion energy values from the 0.09 fm physical quark mass ensemble as a function of the number of states of each
parity (left) and as a function of tmin (right). p-value is ≈ 1 for every fit shown except Nexp = 1.
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parity (left) and as a function of tmin (right). p-value is ≈ 1 for every fit shown except Nexp = 1.



Dispersion relation
Fitted energies of moving pions and kaons do not agree perfectly with the expected
value from the dispersion relation.

I Dispersion relation errors are expected to scale like α2
S (ap)2.

I Violations appear random in our data.

I Pion and kaon have similar momenta but pion energies have much larger errors.

I We correct for q2 6= 0 with a term in the chiral-continuum fit.
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Three-point fits
The three-point correlator fit functions have the form:

CD→P(t) =

Nexp∑
j

Nexp∑
k

Vjk (aPj )(aDk )(e−EP
j te−ED

k (T−t)) + {Other parity comb.} (4)

I Tested fitting two-point correlators then three-points sequentially or both
simultaneously, with the former giving better stability.

I Three of the five available T are included in each fit, more than this shows no
improvement in errors or stability and can make the fit more difficult.
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of each parity (left) and as a function of tmin (right). p-value is ≈ 1 for every fit shown except Nexp < 4.
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D → K form factor fit values from the 0.09 fm physical quark mass ensemble as a function of the number of
states of each parity (left) and as a function of tmin (right). p-value is ≈ 1 for every fit shown except Nexp < 4.



Chiral perturbation theory

I We apply Heavy Meson Staggered χPT expressions calculated by Aubin and
Bernard1,2, in the hard pion/kaon3 limit.

f0(q2) =
C0

fπ

[
(1 + δflogs) + Cvχv + Csχsea + Caχa2 + Cqχq2

]
(5)

I χv , χsea, χa2 and χq2 capture the dependence on the daughter quark mass, sea

quark masses, light quark discretization effects and q2 respectively.

I gπ appears in the chiral logs and is included as a fit parameter with a prior of
0.52± 0.07.

I Define dimensionless parameters χi such that fit parameters are expected to be of
order one and use priors Ci = 0± 2.

I Other terms capturing dependence on (ap)2, a4 and higher order terms are not
included in the central fit but are considered as a part of our systematic error
analysis.

I The central values of the fits are stable under inclusion of such terms.

1C. Aubin and C. Bernard, Phys. Rev. D 76, 014002 (2007) [arXiv:0704.0795]
2D. Becirevic, S. Prelovsek and J. Zupan, Phys. Rev. D 68, 074003 (2003) [hep-lat/0305001]
3J. Bijnens and I. Jemos, Nucl. Phys. B 840, 54 (2010) [arXiv:1006.1197v2].



f D→π0 Chiral and continuum extrapolation
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f D→K
0 Chiral and continuum extrapolation
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Chiral and continuum extrapolation
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I The above plot shows the change in form factor values due to variations in the chiral fit
function, compared to the central fit (colored band).

I The central values of each variation agree within errors, except when the sea quark mass
term is removed, in which case the p-value of the fit is poor.



Finite volume checks
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I D → K form factor values from three different volumes agree within errors.

I Finite volume effects obscured by dispersion relation violations in D → π case.

I Bijnens and Relefors1 provide a method for calculating finite volume effects in the
presence of twisted boundary conditions via χPT.

I Using this method we find an estimate of ∼ 0.06% corrections for D → π, which
are negligible, and we expect corrections for D → K to be of the same order.

1J. Bijnens and J. Relefors, JHEP 1405, 015 (2014) [arXiv:1402.1385]



Preliminary Error Budget

Source of % Error
uncertainty f D→π+ (0) f D→K

+ (0)
Chiral-continuum fit 4.1 2.4
(Statistics)
(Truncation of chiral model)
(discretization errors)
Finite volume 0.06 (0.06)
Scale a 0.2 0.2
Total 4.1 2.4

I Scale setting uncertainty effects determined by rerunning the chiral fit with each
a varied by ±σ, stated uncertainty is the largest change.

I These errors are comparable to those from HPQCD who used 2+1 flavor asqtad
ensembles with HISQ valence quarks.



Conclusion

Fermilab/MILC
(projected errors)

N
f=
2+
1+
1

← Projected errors from
this project overlaid on
the central value of the
FLAG average.

I In this work we are calculating D → K(π) semileptonic form factors at q2 = 0.
I χPT extrapolation to the physical point and continuum limit.
I Anticipate total errors of ∼ 2.4% (∼ 4.1%) for f D→K

+ (0) (f D→π+ (0)).

I Future work:
I Calculations of scalar & vector form factors at multiple q2 values, employing

a z-expansion to get the normalization and shapes.
I Combine with experiment improve the result for the CKM matrix elements.

I Both of these projects use MILC 2+1+1 flavor HISQ ensembles.



EXTRA SLIDES



Chiral fit parameter definitions

χv =
µ(2mv )

8π2f 2
π

(6)

χsea =
µ(2ml + ms)

8π2f 2
π

(7)

χa2 =
a2∆

8π2f 2
π

(8)

χq2 =
q2

8π2f 2
π

(9)


