Progress on the lattice QCD calculation of the rare kaon decays: $K^+ \rightarrow \pi^+ \nu \, \overline{\nu}$

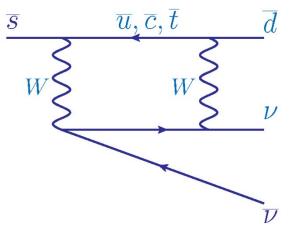
The 34th International Symposium on Lattice Field Theory

July 28, 2016

N.H. Christ*, A. Juettner, A. Lawson, A. Portelli, C. Sachrajda, X. Feng

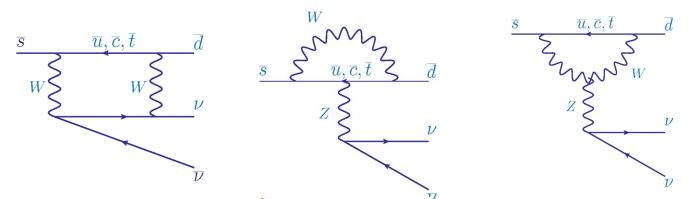
RBC and **UKQCD** Collaborations

The RBC & UKQCD collaborations

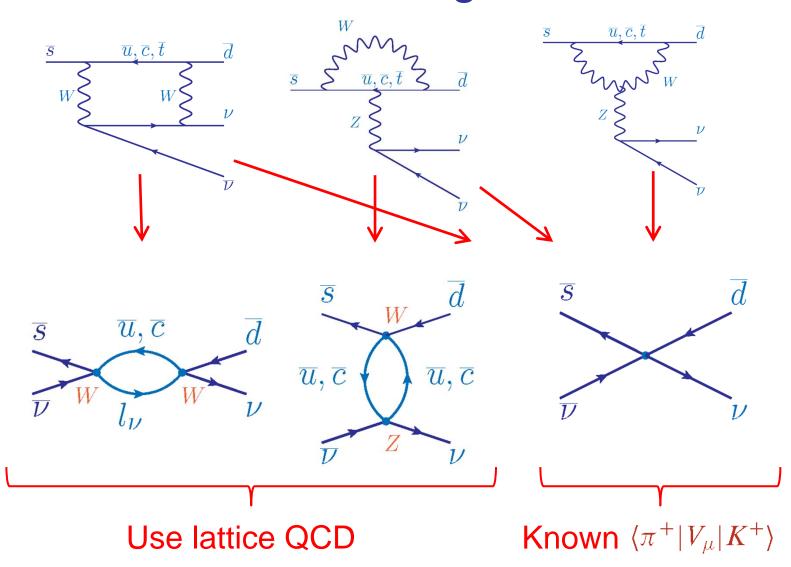

BNL and RBRC	Greg McGlynn David Murphy	<u>Peking University</u>
Mattia Bruno Tomomi Ishikawa	Jiqun Tu	Xu Feng
Taku Izubuchi Chulwoo Jung	<u>University of Connecticut</u>	<u>Plymouth University</u>
Christoph Lehner	Tom Blum	Nicolas Garron
Meifeng Lin Taichi Kawanai	<u>Edinburgh University</u>	<u>University of Southampton</u>
Hiroshi Ohki Shigemi Ohta (KEK) Amarjit Soni Sergey Syritsyn <u>CERN</u> Marina Marinkovic <u>Columbia University</u>	Peter Boyle Guido Cossu Luigi Del Debbio Richard Kenway Julia Kettle Ava Khamseh Brian Pendleton Antonin Portelli Oliver Witzel	Jonathan Flynn Vera Guelpers James Harrison Andreas Juettner Andrew Lawson Edwin Lizarazo Chris Sachrajda Francesco Sanfilippo Matthew Spraggs
Ziyuan Bai	Azusa Yamaguchi	Tobias Tsang
Norman Christ Luchang Jin	<u>KEK</u>	York University (Toronto)
Christopher Kelly Bob Mawhinney	Julien Frison	Renwick Hudspith

Outline

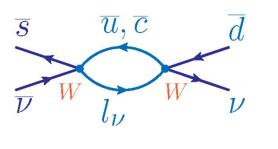
- $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ phenomenology
 - Short distance: E-W perturbation theory
 - Long distance: Lattice QCD needed
- Overview of lattice calculation
 - Subtraction of exponentially growing terms
 - NPR for bilocal operators
- Preliminary lattice results
- Relation to present predictions

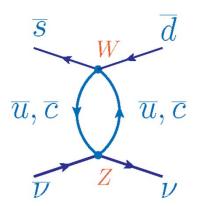

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$

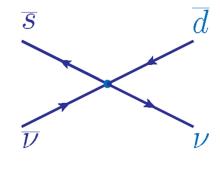
- Flavor changing neutral current
 - Allowed in the Standard Model only in second order
 - Short distance dominated
- Target of NA62 at CERN
 - 100 events in 2-3 years
 - Test Standard Model prediction at 10% level
 - Use lattice for long distance part: 5% effect ?



$K^+ \rightarrow \pi^+ \nu \, \bar{\nu}$ in the Standard Model




- Factors of $\frac{1}{M_W^4}$ or $\frac{1}{M_W^2 M_Z^2}$ force the largest contribution to come from short distance


$K^+ \rightarrow \pi^+ \nu \; \bar{\nu}$ at long distance

H_{eff} for $K^{+} \rightarrow \pi^{+} \nu \ \overline{\nu}$

$H_{\rm eff}$ for $K^+ \rightarrow \pi^+ \nu \ \overline{\nu}$

$$\overline{S}$$
 $\overline{u}, \overline{c}$ \overline{d} \overline{S} $\overline{u}, \overline{c}$ \overline{d} \overline{S} \overline{d} \overline{S} \overline{d} \overline{V} $\overline{U}, \overline{c}$ $\overline{U},$

$H_{\rm eff}$ for $K^+ \rightarrow \pi^+ \nu \ \overline{\nu}$

$$\mathcal{H}_{\text{eff}} = + \frac{G_F}{\sqrt{2}} \left\{ \sum_{\substack{q=u,c\\\ell=e,\mu,\tau}} \left(V_{qs}^* O_{q\ell}^{\Delta S=1} + V_{qd} O_{q\ell}^{\Delta S=0} \right) + \sum_{\ell=e,\mu,\tau} O_\ell^Z + \sum_{q=u,c} \lambda_q O_q^W \right\} + O_0$$

$$O^{\Delta S=1} = C_{\Delta S=1}(\overline{s}q)_{V-A}(\overline{\ell}v_\ell)_{V-A}$$

$$O^{W}_q = C_1(\overline{s}_a q_b)_{V-A}(\overline{q}_b d_a)_{V-A} + C_2(\overline{s}_a q_a)_{V-A}(\overline{q}_b d_b)_{V-A}$$

$$O^{\Delta S=0} = C_{\Delta S=0}(\overline{q}d)_{V-A}(\overline{\ell}v_\ell)_{V-A}$$

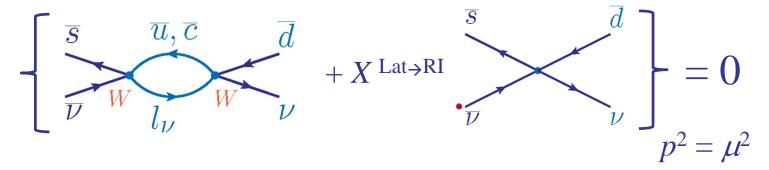
$$O^{Q}_q = C_1(\overline{s}_a q_b)_{V-A}(\overline{q}_b d_a)_{V-A} + C_2(\overline{s}_a q_a)_{V-A}(\overline{q}_b d_b)_{V-A}$$

$$O^{Q}_q = C_2(\overline{q}d)_{V-A}(\overline{\ell}v_\ell)_{V-A}$$

$$O^{Q}_q = C_2(\overline{q}d)_{V-A}(\overline{\ell}v_\ell)_{V-A}$$

$$O_{\ell}^{Z} = C_{Z} \sum_{q=u,c,d,s} \left(T_{3}^{q} \overline{q} \gamma_{\mu} (1 - \gamma_{5}) q - Q_{\mathrm{em},q} \sin^{2} \theta_{W} \overline{q} \gamma_{\mu} q \right) \overline{\nu_{\ell}} \gamma_{\mu} (1 - \gamma_{5}) \ell$$

Unphysical terms growing exponentially with time


• Encountered previously for $M_{K_L} - M_{K_S}$

$$\int_{-T}^{T} dt \langle \pi \nu \overline{\nu} | T \left(O_{A}(t) O_{B}(0) \right) | K \rangle
= \sum_{n} \left\{ \frac{\langle \pi \nu \overline{\nu} | O_{A}|n \rangle \langle n | O_{B}|K \rangle}{M_{K} - E_{n}} + \frac{\langle \pi \nu \overline{\nu} | O_{B}|n \rangle \langle n | O_{A}|K \rangle}{M_{K} - E_{n}} \right\} \left(1 - e^{(M_{K} - E_{n})T} \right)$$

- Terms with $M_K > E_n$ must be removed.
- Possibly large finite volume corrections: replace principal part by a finite volume sum. (N.H. Christ, X. Feng, G. Martinelli, C.T. Sachrajda, arXiv:1504.01170)

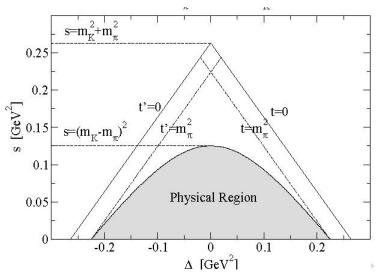
New short-distance divergence

Second order effective theory requires new counter terms

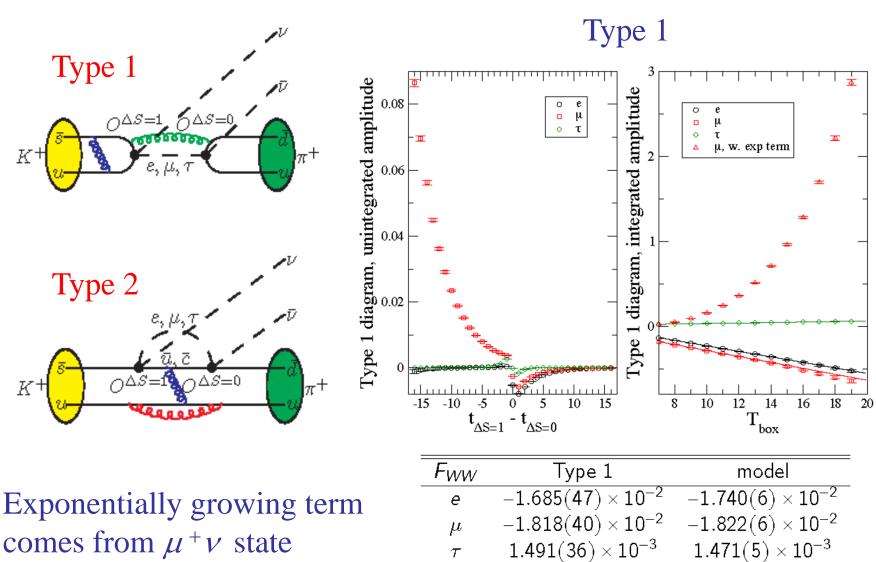
Use NPR for bilocal operator

$$\left\{ \int d^4x T \left(Q_A^{\overline{\text{MS}}}(x) Q_B^{\overline{\text{MS}}}(0) \right) \right\}^{\overline{\text{MS}}} \\
= Z_A Z_B \left\{ \int d^4x T \left(Q_A^{\text{Lat}}(x) Q_B^{\text{Lat}}(0) \right) \right\}^{\text{Lat}} + \left(Z_A Z_B X^{\text{Lat} \to \text{RI}} + Y^{\text{RI} \to \overline{\text{MS}}} \right) Q_0(0)$$

Exploratory Lattice Calculation

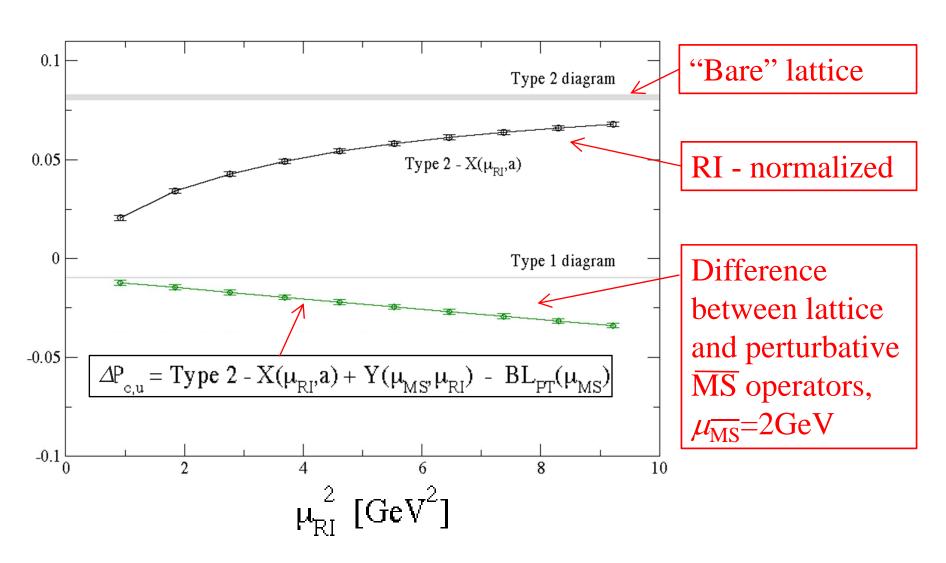

- 16³ x 32, RBC-UKQCD ensemble
 - 2+1 flavor DWF, 1/a = 1.73 GeV
 - $-M_{\pi} = 420 \text{ MeV}, M_{\kappa} = 540 \text{ MeV},$
 - $m_c (2 \text{ GeV})^{MS} = 863 \text{ GeV}$
- Calculate all diagrams
- 800 configurations
- Low-mode deflation with 100 modes
- Place sources on 32 time slices
- Treat internal lepton as an overlap fermion moving in ∞ time.

Exploratory Lattice Calculation

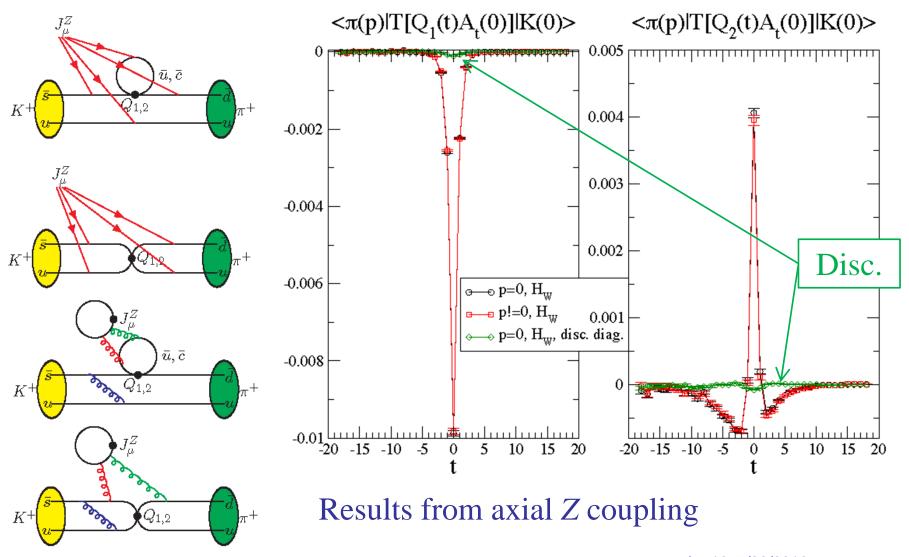

- All results given as scalar amplitudes
 - W-exchange diagram determines $F_{WW}(s, \Delta)$ for Dalitz plot variables:

$$s = (p_K - p_{\pi})^2$$
, $\Delta = (p_K - p_{\nu})^2 - (p_K - p_{\nu})^2$

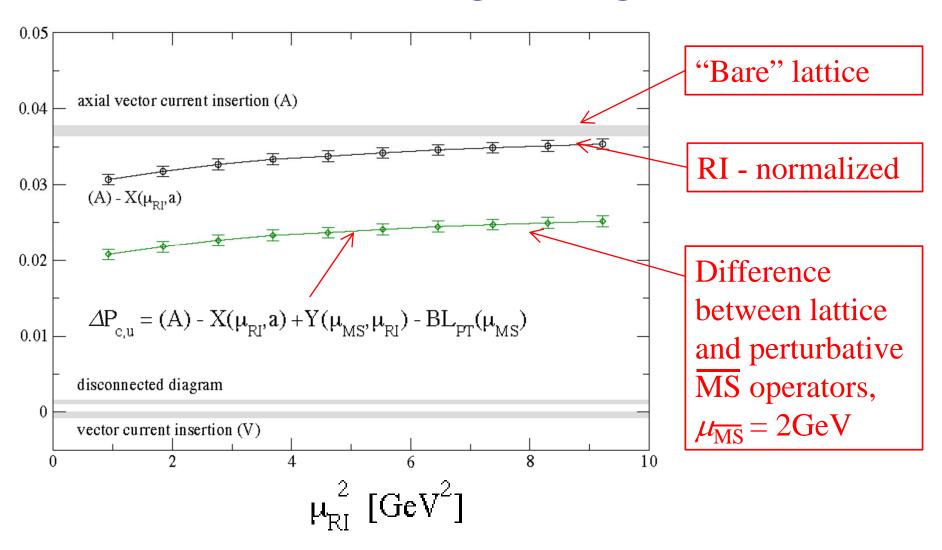
- Vector and axial from Z-exchange determine familiar $KI3 f_{+}(s)$
- Assume these are constants
- Evaluate at \vec{p}_{K} =0 and \vec{p}_{π} = (0.0414, 0.0414, 0.0414)
- For vector Z-exchange also use $\vec{p}_{\pi} = 0$



W W diagrams



Lat16 7/28/2016 (14)


W W diagrams

Z – Exchange Diagrams

Z – Exchange diagrams

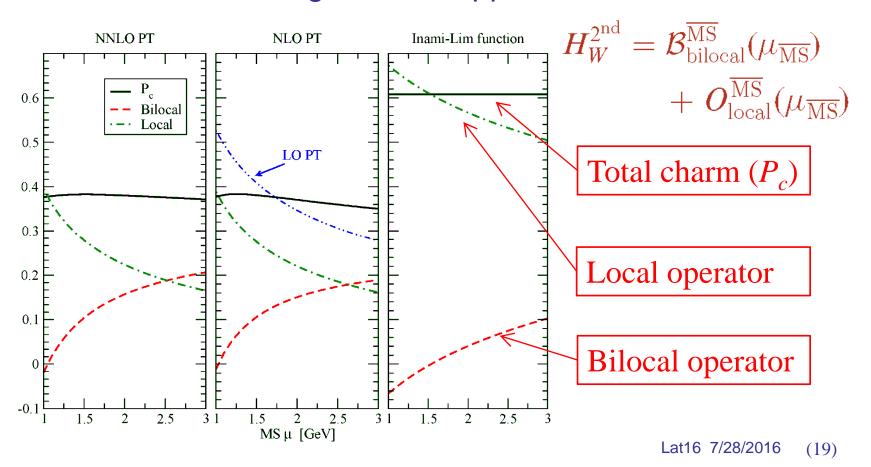
How does lattice QCD contribute?

Decay rate is short distance dominated:

$$\operatorname{Br} = \kappa_{+}(1 + \Delta_{\operatorname{EM}}) \left[\left(\frac{\operatorname{Im} \lambda_{t}}{\lambda^{4}} X(x_{t}) \right)^{2} + \left(\frac{\operatorname{Re} \lambda_{c}}{\lambda} P_{c} + \frac{\operatorname{Re} \lambda_{t}}{\lambda^{5}} X(x_{t}) \right)^{2} \right]$$

$$0.270 \times 1.481 \quad -0.974 \times 0.405 \quad -0.533 \times 1.481$$

$$P_{c}^{\operatorname{SD}} = \frac{1}{\lambda^{4}} \frac{X_{c}^{e} + X_{c}^{\mu} + X_{c}^{\tau}}{3} \qquad \lambda = |V_{us}|$$


 Charm contribution is less than top but is significant (removing charm lowers BR by 50%)

$$\lambda_t X_t(x_t) : \lambda_c X_c^{\ell} :: \lambda_t \frac{m_t^2}{M_W^2} : \lambda_c \frac{m_c^2}{M_W^2} \ln \frac{M_W}{m_c}$$

How important is the charm energy scale?

Importance of charm energy scale

- Presence of $ln(M_W^2/m_c^2) = 8.4$ suggests charm scale may be 12% of charm contribution?
- However, the log term is suppressed at NLO:

Conventional treatment of $p \le m_c$

Electroweak and QCD perturbation theory provides:

$$H_W^{2^{
m nd}} = \mathcal{B}_{
m bilocal}^{\overline{
m MS}}(\mu_{\overline{
m MS}}) + O_{
m local}^{\overline{
m MS}}(\mu_{\overline{
m MS}})$$

Integrate out charm:

$$\mathcal{B}_{\text{bilocal}}^{\overline{\text{MS}}}(\mu_{\overline{\text{MS}}}) \approx C_W(\mu_{\overline{\text{MS}}}) \cdot Q_0^{\overline{\text{MS}}}(\mu_{\overline{\text{MS}}}) \qquad Q_0 = (\overline{s}d)_{V-A}(\overline{v}v)_{V-A}$$

$$\overline{s} \qquad \overline{u}, \overline{c} \qquad \overline{d}$$

$$V = C_W$$

- Long distance effect of up quark is missing, represented by δP_{cu} : $P_c = P_c^{SD} + \delta P_{cu}$
 - $-P_c^{SD} = 0.365(12)$
 - $-\delta P_{cu} = 0.040(20)$ [Isidori *et. al*, hep-ph/0503107]

Lattice result (unphysical kinematics)

• Replace:
$$P_c = P_c^{SD} + \delta P_{cu} = 0.040 (20)$$

• By:
$$P_c = P_c^{SD} + \Delta P_{cu}$$

where Evaluate bilocal matrix element

$$\Delta P_{cu}(\mu_{\overline{\mathrm{MS}}}) \propto \langle \pi \nu \overline{\nu} | \left\{ \mathcal{B}_{\mathrm{bilocal}}^{\overline{\mathrm{MS}}}(\mu^{\overline{\mathrm{MS}}}) \right\}$$

$$-C_W(\mu_{\overline{\mathrm{MS}}}) \cdot Q_0^{\overline{\mathrm{MS}}}(\mu_{\overline{\mathrm{MS}}}) \} |K^+\rangle$$

Remove conventional approximation to matrix element

$$\Delta P_{cu} \left(\mu_{\overline{\text{MS}}} = 2.0 \text{ GeV} \right) = -0.007(2) + \begin{pmatrix} +7 \\ -11 \end{pmatrix}_{RI} + \begin{pmatrix} +5 \\ -21 \end{pmatrix}_{\overline{\text{MS}}}$$

Conclusion

- Use lattice methods to compute the QCD contribution to $K^+ \rightarrow \pi^+ \nu \, \overline{\nu}$ from $E \leq m_c$
- Exponentially growing terms and bilinear operator normalization can be controlled.
- Demonstrated by a 16^3 x 32 exploratory lattice calculation with $m_{\pi} = 420$ MeV
- Next steps:
 - Use a larger volume 32^3 x 64 with m_{π} = 170 MeV but m_c = 750 MeV now being analyzed
 - Move to 1/a = 2.38 GeV, 64^3 x 128 and physical m_c currently a USQCD Incite proposal