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Introduction

◮ Wilson flow: popular tool for scale setting, renormalization of
composite operators.

M. Lüscher, 1006.4518; Lüscher & Weisz, 1101.0963

◮ Use of Wilson flow to study deconfinement transition.
◮ Equation of state: Asakawa et al.(FlowQCD), 1312.7492

◮ Polyakov loop: order parameter for deconfinement in pure
gauge theory.

P(T , a) ∼ e−c(T )/a Pr (T ) → 0 as a → 0

◮ For observable with continuum limit: need to consider “fat”
Polyakov loop.

◮ Use of flowed Polyakov loop and route to renormalized
Polyakov loop. (1512.04892)

◮ Other studies: Petreczky & Schadler, 1509.07874; Bazavov et al.,

1603.06637

◮ Flow behavior of Gluon condensates.
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Flowed Polyakov loop

•For Wilson flow to time t, operators constructed are smeared to a
radius ∼

√
8t (Luscher ’06)

For
√
t ≫ a, negligible cutoff effect
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On the other hand, thermal physics requires T ≫ 1√
t

•T ≪ 1√
t
. 1

a
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Polyakov loop at a fixed flow time

We can look at Polyakov loops flowed to a fixed hadronic scale.

Petreczky & Schadler, 1509.07874
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•Tc fixed by peak of (thin) P susceptibility, T/Tc using flow time.
•Difficult to cover a wide temperature range;

√
t0.3Tc ∼ 0.25

Francis et al., 1503.05652; Asakawa et al, 1503.06516
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√
tT fixed

Alternately, fix flow time in temperature units.

Asakawa et al. (2013)
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•Temperatures covering 0.9-3 Tc for SU(3).
•Center symmetry dictates susceptibility always peaks at Tc .
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Nf = 2

Nf=2 staggered, 323x8 lattices, mπ ∼ 220 MeV.

With R. Gavai
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•Broad peak for thin Polyakov loop, sharpens with flow.
•Peak stays fixed after

√
t > a, agrees with χdis

ψ̄ψ
peak (Tc).

•Shift of P susceptibility peak with flow time found in Bazavov et al.,

1603.06637. Mass dependence?
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Renormalized Polyakov loop from flow

◮ Renormalization of Polyakov loop well-studied. For lattice
spacing a multiplicative renormalization as

Pr (T ) = Z (a)1/aT P(T , a)

Polyakov ’77

◮ Various well-motivated prescriptions for non-perturbative
renormalization of Pr (T ).

◮ Here, using Wilson flow, we will explore the efficacy of a
perturbative renormalization.

◮

Pr (T ) = lim
t→0

exp

(

R(g2(t))√
tT

)

P(T , t)

R(g2(t)) =

√
π

6
√
2π2

g2(t) +O(g4)

Datta et al, 1512.04892
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Renormalizing perturbatively

exp

(

R(g2(t))√
tT

)

P(T , t) = Pr (T ) +O(t)

For small enough t can attempt linear extrapolation to t → 0.
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•This follows small-t expansion strategy of Suzuki, 1304.0533, used by
Asakawa et al, 1312.7492 for equation of state (Also Kanaya,
wednesday)
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A note on the coupling

To calculate the coupling, we can use Tc

Λ
Nf =0

MS

= 1.20± 0.02 (Datta

& Gupta, 0909.5591). Other determinations: 1.24± 0.10 (Francis et al.,

1503.05652) and 1.18± 0.01 (Asakawa et al., 1503.06516). Alternately, we
can extract it from

〈E(t)〉 =
3

16π2
(g2

MS
(µ = 1/

√
8t) + 1.0978g4 + ..)
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The matching program

•R function of t only =⇒ run this program at a high T , use
calculated R for renormalization at lower temperatures.
•Use Pr (3Tc) = 1.017(1) to calculate R(t) =⇒ Pr at lower
temperature. Run iteratively to stay in allowed t range.
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This follows Gupta & Kaczmarek, PR D 77 (2007) 034503, except our
renormalization factor depends on t and not a, so no need to do
sets of simulations to match a.
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Electric and magnetic condensate

Flow behavior of E = TrG0iG0i and M = 1
2TrGijGij
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On crossing Tc the flow behavior of the electric and magnetic
parts of the condensate change dramatically.
A LO calculation captures this behavior, though effect stronger in
interacting theory. (1512.04892)
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Electric and magnetic condensate
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For t ≫ a2, the quantity 〈E−M〉(T ,t)
T 4 ∝ s

T 3

Flow behavior can be related to entropy release at deconfinement.
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2-flavor

Similar behavior seen in the 2-flavor theory, though onset is less
abrupt.
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Gluon condensate

〈E (T , t)〉 and 〈M(T , t)〉 related to electric and magnetic gluon
condensates.
Remove the 1/t2 divergence by subtracting the T = 0 part. Then
the electric and magnetic parts of the gluon condensate can be
obtained from the flowed quantities as

Ḡ 2
E ,M(T ) = lim

t→0
R(t) · {Ē (T ), M̄(T )}

R(t) =
1

π2

(

1− 2b0s2g
2(t) +O(g4)

)

H. Suzuki, 1304.0533
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Condensate vs. t
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On our data, could not do reliable extrapolation even at 2 Tc .
To get a qualitative feeling, we show these quantities at the
smallest t value before cutoff effects set in.
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Results
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Qualitative features in good agreement with earlier calculation in
Boyd et al., Nucl.Phys.B469(’94)419.

At high temperatures approaches the LO result
〈G 2

E 〉T = −〈G 2
M〉T +O(g4).
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Summary

◮ Wilson flow provides a powerful tool to study the
deconfinement transition.

◮ Can use flow to create continuum-defined Polyakov loop-like
operator.

◮ Provides a convenient way of renormalizing the Polyakov loop.

◮ Together with 〈ψ̄ψ〉r , provide complete set of observables to
study the transition.

◮ The flow behavior of electric and magnetic parts of the gluon
condensate are very different.

◮ In principle condensates at small flow can be used to calculate
renormalized condensates (Suzuki 1304.0533). But with leading
order renormalization coefficients, difficult to do t → 0
extrapolation even with Nt=10 lattices. Larger Nt will help.

EoS results: Kanaya, wednesday; FlowQCD, new results.
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