Using Wilson flow to study the deconfinement transition

Saumen Datta¹, Sourendu Gupta¹ and Andrew Lytle²

 1 Tata Institute of Fundamental Research, Mumbai 2 University of Glasgow

July 29, 2016

Introduction

Wilson flow: popular tool for scale setting, renormalization of composite operators.

M. Lüscher, 1006.4518; Lüscher & Weisz, 1101.0963

- Use of Wilson flow to study deconfinement transition.
- ► Equation of state: Asakawa et al.(FlowQCD), 1312.7492
- Polyakov loop: order parameter for deconfinement in pure gauge theory.

$$P(T,a) \sim e^{-c(T)/a} P_r(T) \rightarrow 0 \text{ as } a \rightarrow 0$$

- For observable with continuum limit: need to consider "fat" Polyakov loop.
- Use of flowed Polyakov loop and route to renormalized Polyakov loop. (1512.04892)
- Other studies: Petreczky & Schadler, 1509.07874; Bazavov et al., 1603.06637
- Flow behavior of Gluon condensates.

Flowed Polyakov loop

•For Wilson flow to time t, operators constructed are smeared to a radius $\sim \sqrt{8t}$ (Luscher '06)

For $\sqrt{t} \gg a$, negligible cutoff effect

On the other hand, thermal physics requires $T \gg \frac{1}{\sqrt{t}}$

$$ullet T \ll rac{1}{\sqrt{t}} \lesssim rac{1}{a}$$

Polyakov loop at a fixed flow time

We can look at Polyakov loops flowed to a fixed hadronic scale.

Petreczky & Schadler, 1509.07874

- T_c fixed by peak of (thin) P susceptibility, T/T_c using flow time.
- •Difficult to cover a wide temperature range; $\sqrt{t_{0.3}}\,T_c\sim 0.25$

Francis et al., 1503.05652; Asakawa et al, 1503.06516

$\sqrt{t}T$ fixed

Alternately, fix flow time in temperature units.

Asakawa et al. (2013)

- •Temperatures covering 0.9-3 T_c for SU(3).
- •Center symmetry dictates susceptibility always peaks at T_c .

$N_f = 2$

 N_f =2 staggered, 32³x8 lattices, $m_{\pi} \sim$ 220 MeV.

With R. Gavai

- Broad peak for thin Polyakov loop, sharpens with flow.
- •Peak stays fixed after $\sqrt{t} > a$, agrees with $\chi_{\overline{a_{1}a_{2}b}}^{\mathrm{dis}}$ peak (T_{c}) .
- •Shift of P susceptibility peak with flow time found in Bazavov et al., Mass dependence? 1603.06637.

Renormalized Polyakov loop from flow

 Renormalization of Polyakov loop well-studied. For lattice spacing a multiplicative renormalization as

$$P_r(T) = Z(a)^{1/aT} P(T, a)$$

Polyakov '77

- ▶ Various well-motivated prescriptions for non-perturbative renormalization of $P_r(T)$.
- Here, using Wilson flow, we will explore the efficacy of a perturbative renormalization.

>

$$P_r(T) = \lim_{t \to 0} \exp\left(\frac{R(g^2(t))}{\sqrt{t}T}\right) P(T, t)$$

$$R(g^2(t)) = \frac{\sqrt{\pi}}{6\sqrt{2}\pi^2} g^2(t) + \mathcal{O}(g^4)$$

Renormalizing perturbatively

$$\exp\left(\frac{R(g^2(t))}{\sqrt{t}T}\right)P(T,t) = P_r(T) + \mathcal{O}(t)$$

For small enough t can attempt linear extrapolation to $t \to 0$.

•This follows small-t expansion strategy of Suzuki, 1304.0533, used by Asakawa et al, 1312.7492 for equation of state (Also Kanaya, wednesday)

A note on the coupling

To calculate the coupling, we can use $\frac{T_c}{\Lambda_{\overline{MS}}^{N_f=0}} = 1.20 \pm 0.02$ (Datta

& Gupta, 0909.5591). Other determinations: 1.24 ± 0.10 (Francis et al., 1503.05652) and 1.18 ± 0.01 (Asakawa et al., 1503.06516). Alternately, we can extract it from

$$\langle \mathcal{E}(t) \rangle \; = \; rac{3}{16\pi^2} \; (g_{MS}^2(\mu = 1/\sqrt{8t}) \; + 1.0978 g^4 + ..)$$

Saumen Datta, Sourendu Gupta and Andrew Lytle

The matching program

- R function of t only \Longrightarrow run this program at a high T, use calculated R for renormalization at lower temperatures.
- •Use $P_r(3T_c) = 1.017(1)$ to calculate $R(t) \implies P_r$ at lower temperature. Run iteratively to stay in allowed t range.

This follows Gupta & Kaczmarek, PR D 77 (2007) 034503, except our renormalization factor depends on t and not a, so no need to do sets of simulations to match a.

Electric and magnetic condensate

Flow behavior of $E = \operatorname{Tr} G_{0i} G_{0i}$ and $M = \frac{1}{2} \operatorname{Tr} G_{ij} G_{ij}$

On crossing T_c the flow behavior of the electric and magnetic parts of the condensate change dramatically.

A LO calculation captures this behavior, though effect stronger in interacting theory. (1512.04892)

Electric and magnetic condensate

For $t \gg a^2$, the quantity $\frac{\langle E-M \rangle(T,t)}{T^4} \propto \frac{s}{T^3}$ Flow behavior can be related to entropy release at deconfinement.

Thow behavior can be related to entropy release at decommement

2-flavor

Similar behavior seen in the 2-flavor theory, though onset is less abrupt.

Gluon condensate

 $\langle E(T,t)\rangle$ and $\langle M(T,t)\rangle$ related to electric and magnetic gluon condensates.

Remove the $1/t^2$ divergence by subtracting the T=0 part. Then the electric and magnetic parts of the gluon condensate can be obtained from the flowed quantities as

$$\bar{G}_{E,M}^{2}(T) = \lim_{t \to 0} R(t) \cdot \{\bar{E}(T), \bar{M}(T)\}
R(t) = \frac{1}{\pi^{2}} (1 - 2b_{0}s_{2}g^{2}(t) + \mathcal{O}(g^{4}))$$

H. Suzuki, 1304.0533

Condensate vs. t

On our data, could not do reliable extrapolation even at 2 T_c . To get a qualitative feeling, we show these quantities at the smallest t value before cutoff effects set in.

Results

Qualitative features in good agreement with earlier calculation in Boyd et al., Nucl.Phys.B469('94)419.

At high temperatures approaches the LO result $\langle G_F^2 \rangle_T = -\langle G_M^2 \rangle_T + \mathcal{O}(g^4)$.

Summary

- Wilson flow provides a powerful tool to study the deconfinement transition.
- Can use flow to create continuum-defined Polyakov loop-like operator.
- Provides a convenient way of renormalizing the Polyakov loop.
- ▶ Together with $\langle \bar{\psi}\psi \rangle_r$, provide complete set of observables to study the transition.
- ► The flow behavior of electric and magnetic parts of the gluon condensate are very different.
- ▶ In principle condensates at small flow can be used to calculate renormalized condensates (Suzuki 1304.0533). But with leading order renormalization coefficients, difficult to do $t \rightarrow 0$ extrapolation even with N_t =10 lattices. Larger N_t will help.

EoS results: Kanaya, wednesday; FlowQCD, new results.

