

Supergravity from Gauge Theory

Evan Berkowitz Lawrence Livermore National Laboratory

LATTICE 2016 2016-07-29

1602.01473 1603.03055, EB, Masanori Hanada, Jonathan Maltz 1606.04948 1606.04951, Monte Carlo String + M-theory Collaboration (MCSMC) EB, Enrico Rinaldi, Masanori Hanada, Pavlos Vranas, Goro Ishiki, Shinji Shimasaki, So Matsuura + forthcoming work

> LLNL-PRES-692051 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

Outline

- Gauge/Gravity Duality & Motivation
- The BFSS Matrix Model
- Data Collection
- Fitting
- BFSS matches SUGRA

Outline

- Gauge/Gravity Duality & Motivation
- The BFSS Matrix Model
- Data Collection
- Fitting
- BFSS matches SUGRA

Gauge / Gravity Duality Conjecture

Maldacena hep-th/9711200

Weak / Strong

Gauge / Gravity Duality Conjecture

Maldacena hep-th/9711200

Gauge / Gravity Duality Conjecture

Gauge / Gravity Duality Conjecture Maldacena hep-th/9711200

Quantum Gravity

Gauge Theory

Einstein gravity

Tree-level strings

Quantum strings

Large *N* strong coupling Large *N* finite coupling Finite *N*

finite coupling

Numerical Approaches

Catterall, Kaplan, and Unsal 0903.4881

$\mathcal{N}=1$ SYM in 10D

$\mathcal{N}=4$ SYM in 4D

BFSS

- Large number of spacetime dimensions
- Naive lattice breaks SUSY
- Numerical fine-tunings?
 Kaplan, Katz and Unsal hep-lat/0206019 Kaplan and Unsal hep-lat/0503039 Schaich and Catterall 1505.03135 1508.00884
- 0+1 dimensional
- No fine-tunings
- Easy numerics

BFSS Matrix Model

Banks Fischler Shenker Susskind hep-th/9610043

$$L = \frac{1}{2g_{YM}^2} \operatorname{Tr}\left\{ (D_t X_M)^2 + [X_M, X_{M'}]^2 + i\bar{\psi}^{\alpha} D_t \psi^{\beta} + \bar{\psi}^{\alpha} \gamma^M_{\alpha\beta} [X_M, \psi^{\beta}] \right\}$$
$$D_t \cdot = \partial_t \cdot -i[A_t, \cdot]$$

M: 1...9 X, ψ : bosonic, fermionic N×N matrices a: 1...16 y: left-handed part of 9+1D

- Obvious nonperturbative definition (discretized QM)
- Defined for all N and g_{YM} .

• Unitary

BFSS Matrix Model

Banks Fischler Shenker Susskind hep-th/9610043

- 11D SUGRA at low temperature!
- Dimensionful coupling \rightarrow easy scale setting

dimensionless temperature $\lambda^{-1/3}T$

 $\lambda = g_{YM}^2 N$ $m_{D0} \sim g_s^{-1} \sim g_{VM}^{-2} \sim N$

BFSS conjecture:

 $L = \frac{1}{2q_{YM}^2} \operatorname{Tr}\left\{ \left(D_t X_M \right)^2 + \left[X_M, X_{M'} \right]^2 + i\bar{\psi}^{\alpha} D_t \psi^{\beta} + \bar{\psi}^{\alpha} \gamma_{\alpha\beta}^M [X_M, \psi^{\beta}] \right\}$

maximally supersymmetric matrix quantum mechanics = M theory

BFSS Cartoon

BFSS Has Flat Directions

de Wit, Lüscher, Nicolai - Nucl. Phys. B 320, 135 (1989)

2 black branes

BFSS Has Flat Directions

de Wit, Lüscher, Nicolai - Nucl. Phys. B 320, 135 (1989)

Potential ~ $\operatorname{Tr}\left\{ [X_M, X_{M'}]^2 \right\}$

At Large N BFSS is a 2nd-quantized theory!

2 black branes

BFSS Cartoon

1 Black 0-Brane + 1 D0 Radiation

BFSS Cartoon

$L = \frac{1}{2g_{YM}^2} \operatorname{Tr}\left\{ \left(D_t X_M \right)^2 + \left[X_M, X_{M'} \right]^2 + i\bar{\psi}^{\alpha} D_t \psi^{\beta} + \bar{\psi}^{\alpha} \gamma^M_{\alpha\beta} [X_M, \psi^{\beta}] \right\}$

- Chaos → flat directions will ultimately be found
- Flat directions + chaos → evaporation by D0 emission has specific heat < 0! 1602.01473 1603.03055

1 Black 0-Brane + 1 D0 Radiation

Monte Carlo Considerations

Goal: study a metastable state?

DOF ~
$$N^2$$

trecurrence~ e^{+N^2}

DOF ~ $(N-1)^2$

Monte Carlo Considerations

Monte Carlo Considerations

Aim: Test Duality Nonperturbatively: Finite T BH Internal Energy in SUGRA - BFSS

$$E/N^{2} = \frac{\left(a_{0}T^{2.8} + a_{1}T^{4.6} + a_{2}T^{5.8} + \cdots\right)}{N^{0}} + \frac{\left(b_{0}T^{0.4} + b_{1}T^{2.2} + \cdots\right)}{N^{2}} + \mathcal{O}\left(\frac{1}{N^{4}}\right)$$

IIA String theory $E/N^2 = \frac{\left(a_0 T^{2.8} + a_1 T^{4.6} + a_2 T^{5.8} + \cdots\right)}{N^0} + \frac{\left(b_0 T^{0.4} + b_1 T^{2.2} + \cdots\right)}{N^2} + \mathcal{O}\left(\frac{1}{N^4}\right)$

Fast Scrambling arXiv:1512.00019 Gur-Ari, Hanada, Shenker $t_{\text{scramble}} \sim \log N$

SUGRA arXiv:0707.4454 Anagnostopoulos et al. arxiv:0803.4273 Catterall+Wiseman arXiv:1503.08499 Kadoh, Kamata arXiv:1506.01366 Filev, O'Connor

Finite N arXiv:0811.3102 Hanada, Hyakutake, Nishimura, Takeuchi arXiv:1311.5603 arXiv:1603.00538 Hanada, Hyakutake, Ishiki, Nishimura arXiv:1606.04948 arXiv:1606.04951 MCSMC

Polyakov loop arXiv:0811.2081 Hanada, Miwa, Nishimura, Takeuchi

2-point functions arXiv:1108.5153 Hanada, Nishimura, Sekino, Yoneya, 2009, 2011

IIA String theory $E/N^2 = \frac{(a_0T^{2.8} + a_1T^{4.6} + a_2T^{5.8} + \cdots)}{N^0} + \frac{(b_0T^{0.4} + b_1T^{2.2} + \cdots)}{N^2} + \mathcal{O}\left(\frac{1}{N^4}\right)$

Fast Scrambling arXiv:1512.00019 Gur-Ari, Hanada, Shenker $t_{\text{scramble}} \sim \log N$

SUGRA arXiv:0707.4454 Anagnostopoulos et al. arxiv:0803.4273 Catterall+Wiseman arXiv:1503.08499 Kadoh, Kamata arXiv:1506.01366 Filev, O'Connor

Finite N arXiv:0811.3102 Hanada, Hyakutake, Nishimura, Takeuchi arXiv:1311.5603 arXiv:1603.00538 Hanada, Hyakutake, Ishiki, Nishimura arXiv:1606.04948 arXiv:1606.04951 MCSMC

Polyakov loop arXiv:0811.2081 Hanada, Miwa, Nishimura, Takeuchi

2-point functions arXiv:1108.5153 Hanada, Nishimura, Sekino, Yoneya, 2009, 2011

Example MC History MCSMC - arXiv:1606.04948 arXiv:1606.04951

T=0.5 N=24 L=32

Required Statistics

T=0.5 N=16 L=32

Continuum Extrapolations

Continuum Extrapolations

MCSMC - arXiv:1606.04948 arXiv:1606.04951

Simultaneous

 e_{01}, e_{02}, e_{10} $\frac{E}{N^2} = \sum_{ij \ge 0} \frac{e_{ij}}{N^{2i}L^j}$

T = 0.5

Simultaneous

T=0.5

MCSMC - arXiv:1606.04948 arXiv:1606.04951

Simultaneous

 $e_{00}, e_{01}, e_{02}, e_{10}$

 $E/N^{2} = \frac{\left(a_{0}T^{2.8} + a_{1}T^{4.6} + a_{2}T^{5.8} + \cdots\right)}{N^{0}} + \frac{\left(b_{0}T^{0.4} + b_{1}T^{2.2} + \cdots\right)}{N^{2}} + \mathcal{O}\left(\frac{1}{N^{4}}\right)$ IIA String theory $a_0 = 7.41$ $b_0 = -5.77$ Stringy Prediction $p_1=4.6\pm0.3$ 4 $a_1 = -10.2 \pm 2.4$ e_{00} SUGRA $a_2 = 6.2 \pm 2.6$ ----- Hanada et al. ⊅ x²=2.6 3 ----- Kadoh and Kamata DOF=3 $----7.41T^{14/5}+a_1T^{p_1}$ ------ 7.41 $T^{14/5}$ + $a_1T^{p_1}$ + $a_2T^{6/5+p_1}$ யீ 2 Strong coupling Weak coupling 0.2 0.4 0.6 0.8 1.0 0.0

1/N² Correction MCSMC - arXiv:1606.04948 arXiv:1606.04951

IIA String theory

$$E/N^{2} = \frac{(a_{0}T^{2.8} + a_{1}T^{4.6} + a_{2}T^{5.8} + \cdots)}{N^{0}} + \frac{(b_{0}T^{0.4} + b_{1}T^{2.2} + \cdots)}{N^{2}} + \mathcal{O}\left(\frac{1}{N^{4}}\right)$$

$$a_{0} = -7.41$$

Stringy Prediction

 $a_0 = 7.41$ $b_0 = -5.77$

1/N² Correction MCSMC - arXiv:1606.04948 arXiv:1606.04951

- Nontrivial checks of gauge/gravity duality
- 0+1D BFSS Matrix Model reproduces 11D SUGRA
- BFSS ~ SUGRA + predictions about (quantum!) stringy corrections

- Can we verify emergent spacetime far from the eigenvalue bunch?
- Can we push towards the M-theory region, see ~massless Hawking radiation?
- How does entanglement enter this story?

Backup Slides

Berkowitz, Hanada, Maltz - arXiv:1602.01473

 $\begin{array}{l} \mathsf{DOF} \sim \mathsf{N}^2 \\ \mathsf{t}_{\text{recurrence}} \sim \mathsf{e}^{+\mathsf{N}^2} \end{array}$

DOF ~ $(N-1)^2$

Emission of "clumps" is suppressed

 $\begin{array}{l} \text{DOF} \sim N^2 \\ \text{t}_{\text{recurrence}} \sim e^{+N^2} \end{array}$

DOF ~ $(N-2)^2$

Emission of "clumps" is suppressed

\longrightarrow

Negative Specific Heat Berkowitz, Hanada, Maltz - arXiv:1602.01473

Classically $E \sim c N^2 T$

(Virial: c=6)

 $cN^2T = c(N-1)^2T' + E_{D0}$

$$T' = \left(\frac{N}{N-1}\right)^2 T - \frac{E_{D0}}{cN^2}$$
$$\approx \left(1 + \frac{2}{N}\right) T$$

Quantum Mechanically $E = a_0 \lambda^{-3/5} T^{14/5} N^2$ (SUGRA: a₀=7.41) $\lambda' = \frac{N-1}{N}\lambda$ $T'^{14/5} = \frac{\lambda^{-3/5} N^2}{\lambda'^{-3/5} (N-1)^2} T^{14/5} - \frac{E_{D0}}{a_0 \lambda' (N-1)^2}$ $T' \approx \left(1 + \frac{1}{2N}\right)T$

T' > T!

Negative Specific Heat

- Generic for large-*N* matrix models
- Valid classically and quantum-mechanically
- Evaporation process is unitary, and meaningful $\tau{<}t_{\text{recurrence}}$
- No remnant
- As time goes on T goes up, dynamics becomes BFSS classical → real time?

Kolmogorov-Sinai Entropy Berkowitz, Hanada, Maltz - arXiv:1602.01473

Evaporation:

 $\begin{array}{lll} \text{High } T & \lambda_{\max} \sim T^{1/4} & KS \propto N^2 T^{1/4} \rightarrow (N-1)^2 \left(T+\Delta T\right)^{1/4} \\ & \Delta T \approx \frac{2}{N} T & \rightarrow \left(N^2 \left(-\frac{3N}{2}\right) T^{1/4}\right) \\ \text{Low } T & \lambda_{\max} \sim T & KS \propto N^2 T \rightarrow (N-1)^2 \left(T+\Delta T\right) \\ & \Delta T \approx \frac{1}{2N} T & \rightarrow \left(N^2 \left(-\frac{3N}{2}\right) T\right) \end{array}$

Lyapunov exponent grows but KS entropy falls!

Mergers:KSgrows dramaticallybigger black holes are faster scramblers

Spectrum is thermal

Berkowitz, Hanada, Maltz - arXiv:1603.03055

$$W = \sum_{E_{\rm BH} + E_{\rm rad} = E} W_{\rm BH}(E_{\rm BH}) \cdot W_{\rm rad}(E_{\rm rad}), \qquad (3)$$

where $W_{\rm BH} = e^{S_{\rm BH}}$, can be evaluated as

$$W = \sum_{E_{\rm rad}} \left(W_{\rm rad}(E_{\rm rad}) \cdot e^{S_{\rm BH}(E - E_{\rm rad})} \right) \simeq W_{\rm BH}(E) \sum_{E_{\rm rad}} \left(W_{\rm rad}(E_{\rm rad}) \cdot e^{-\frac{E_{\rm rad}}{T_{\rm BH}(E)}} \right), \quad (4)$$

where $T_{\rm BH} \equiv \left(\frac{dS_{\rm BH}}{dE}\right)^{-1}$. Here, corrections of order 1/N, which contain information about quantum gravity effects, have been ignored. In principle we can calculate such corrections by fully solving the matrix model.