

Centre vortices are the seeds of dynamical chiral symmetry breaking

Waseem Kamleh

Collaborators Daniel Trewartha, Derek Leinweber

34th International Symposium on Lattice Field Theory Southampton, UK, July 24-30, 2016

QCD Key Features

Quark Confinement

Dynamical mass generation

Emergent Phenomena

"An emergent behavior or emergent property can appear when a number of simple entities (agents) operate in an environment, forming more complex behaviors as a collective."

CENTRE-VORTEX MODEL OF CONFINEMENT

Centre Vortices

• Centre group of SU(3) is $\{zI: z=1, e^{\pm \frac{2\pi i}{3}}\} \simeq \mathbb{Z}_3$.

Define a centre transformation on a subset of links by

$$U \to ZU, Z \in \mathbb{Z}_3.$$

• A surface A is pierced by a centre vortex if

$$U(\partial A) \xrightarrow{Z} zU(\partial A), \quad z \neq 1.$$

Identifying Centre Vortices

• Apply transformation $\Omega(x)$ to Maximal Centre Gauge,

$$\frac{1}{3}\operatorname{Tr} U^{\Omega}_{\mu}(x) = r_{\mu}(x) \exp(\frac{2\pi i}{3}\phi_{\mu}(x)).$$

• Project onto \mathbb{Z}_3 by choosing $m \in \{-1, 0, 1\}$ closest to ϕ ,

$$Z_{\mu}(x) = \exp\left[\frac{2\pi i}{3}m_{\mu}(x)\right]\mathbf{I},$$

Identify P-vortices via centre-projected plaquette,

$$P_{\mu\nu}(x) = Z_{\mu}(x)Z_{\nu}(x+\mu)Z_{\mu}^{\dagger}(x+\nu)Z_{\nu}^{\dagger}(x) \neq I.$$

$U_{\mu}(x) = Z_{\mu}(x) \cdot R_{\mu}(x)$

Gauge Fields

$$U_{\mu}(x) = Z_{\mu}(x) \cdot R_{\mu}(x)$$

Gauge Fields

$$U_{\mu}(x) = Z_{\mu}(x) \cdot R_{\mu}(x)$$

Untouched

Vortex-only

Gauge Fields

$$U_{\mu}(x) = Z_{\mu}(x) \cdot \boldsymbol{R}_{\mu}(x)$$

Untouched

Vortex-only

Vortex-removed

Static Quark Potential

• Confinement \rightarrow static quark potential is linear

Area Law:
$$V(r) \sim \sigma r \leftrightarrow W(\mathcal{C}) \sim e^{-\sigma A}$$

MCG procedure cannot simultaneously identify all SU(3) vortex matter.

O'Cais et al, Phys. Rev. D 82, 114512 (2010)

Bowman et al, Phys. Rev. D 84, 034501 (2011)

Dynamical Chiral Symmetry Breaking

- Topology and dynamical χSB connected via:
 - Banks-Casher relation, $\langle \overline{q}q \rangle = -\pi \, \rho(0), \text{ as } m_q \to 0$
 - Atiyah-Singer index theorem, $Q = n_{-} n_{+}$ at $m_{q} = 0$.
- Examine local topological charge density,

$$q(x) = \frac{g^2}{16\pi^2} \operatorname{Tr}[\epsilon^{\mu\nu\rho\sigma} F_{\mu\nu}(x) F_{\rho\sigma}(x)]$$

 Non-trivial topology (↔ instantons) characterised by non-zero topological charge,

$$Q = \sum_{x} q(x).$$

Topological Charge

Untouched

Vortex-only

Vortex-removed

Topological Charge

Topological Charge

- Results calculated on 50 pure SU(3) gauge configurations.
 - Lattice size of $20^3 \times 40$, with a = 0.125 fm.
 - Luscher-Weisz mean-field improved action.
- Cooling
 - Minimise the local action.
 - Successive sweeps remove short-range noise, leave an approximation to classical solution.
 - Performed using an $\mathcal{O}(a^4)$ -three-loop improved action.
- Topological charge density
 - Calculated using an $\mathcal{O}(a^4)$ -five-loop improved $F_{\mu\nu}$.
 - Expect to reveal instanton-like objects.

Untouched Configurations with Cooling

Untouched Configurations with Cooling

Untouched Configurations with Cooling

Vortex Removed Configurations with Cooling

Vortex Removed Configurations with Cooling

Vortex Removed Configurations with Cooling

Vortex Only Configurations with Cooling

Vortex Only Configurations with Cooling

Vortex Only Configurations with Cooling

UT and VO comparison (10 sweeps)

UT and VO comparison (40 sweeps)

UT and VO comparison (80 sweeps)

Centre Vortices and Instantons

- Topological charge density:
 - Centre vortices have a connection to instanton degrees of freedom.
 - Vortex removal destabilizes instanton-like objects under cooling.
 - Vortex-only background creates instanton-like objects under cooling.
- Centre vortices are the seeds of instantons!
 - Cooling turns thin vortices into thick vortices.
- How similar are the vortex only and untouched backgrounds on the ensemble level?

- We directly examine the instanton degrees of freedom on our ensembles
- Scan each configuration for local maxima of the action, fit the instanton solution around them

$$S_0(x) = \xi \frac{6}{\pi^2} \frac{\rho^4}{((x - x_0)^2 + \rho^2)^4}$$

· Compare to theoretical relationship,

$$q(x_0) = Q \frac{6}{\pi^2 \rho^4}$$

Instanton ρ vs $q(x_0)$

Instanton ρ vs $q(x_0)$

Number of Instantons

Instanton Radius

Landau Gauge Quark Propagator

IR Enhancement of *M*(*p*) → dynamical mass generation

$$S(p) = \frac{Z(p)}{i \not q + M(p)}.$$

Previous results with an ASQTAD action

Performed with $m_0 a = 0.048$, a = 0.122 on a $16^3 \times 32$ lattice

From Bowman et al, Phys. Rev. D 84, 034501 (2011)

- Previous studies:
 - · Fermion action explicitly breaks chiral symmetry.
 - \Rightarrow Use overlap fermions instead.
- Vortex only configurations:
 - Consist only of centre elements \Rightarrow very rough.
 - Overlap operator has smoothness condition!
 - \Rightarrow 10 sweeps of cooling on vortex only configurations
- Overlap mass parameter of $\mu = 0.004 \rightarrow m_q = 12$ MeV.
VR Mass function

VO Mass function, 10 sweeps

VO Mass function, 40 sweeps

The story so far...

- Chirally sensitive overlap action 'sees' changes to gauge field:
 - Vortex removal destabilizes instanton-like objects
 - Vortex only background contains seeds of instanton-like objects
- Using the overlap operator, we have shown for the first time a clear link between DχSB and centre vortices in SU(3)
 - Removing centre vortices destroys dynamical mass generation
 - Dynamical mass generation completely reproduced from centre vortices alone
- What about the hadron spectrum?

Hadron spectrum

Meson	$I,\ J^{PC}$	Operator
π	$1,0^{+-}$	$ar{q}\gamma_5rac{ au^a}{2}q$
ho	$1, 1^{}$	$ar q\gamma_i { au^a\over 2} q$
a_0	$1,0^{++}$	$ar{q} rac{ au^a}{2} q$
a_1	$1, 1^{++}$	$ar q\gamma_i\gamma_5{ au^a\over 2}q$
Baryon	I, J^P	Operator
Ν	$\frac{1}{2}, \frac{1}{2}^+$	$[u^{\mathrm{T}} \mathrm{C} \gamma_5 d] u$
Δ	$\frac{\bar{3}}{2}, \frac{\bar{3}}{2}^+$	$[u^{\mathrm{T}} \mathrm{C} \gamma_{i} u] u$

- Overlap fermion action.
- 100 sweeps of Gaussian smearing on source.
- 10 sweeps of cooling on VO ensemble.

Vortex-only spectrum: a_0, a_1

Restoration of Chiral Symmetry

• If vortices are responsible for $D\chi SB$, then their removal should restore chiral symmetry

$$SU(2)_L \times SU(2)_R \times U(1)_A$$

 Expect baryon currents related by chiral transformations to become degenerate

$$\pi \xrightarrow{\mathrm{U}(1)_{\mathrm{A}}} a_{0}$$

$$\rho \xrightarrow{\mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{SU}(2)_{\mathrm{R}}} a_{1}$$

$$N \xrightarrow{\mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{SU}(2)_{\mathrm{R}}} \Delta$$

+ $U(1)_A$ is related to the axial anomaly and may be restored separately to $SU(2)_L \times SU(2)_R$

Restoration of Chiral Symmetry

- Chiral symmetry restoration only reasonable at light quark masses, explicitly broken at heavy mass.
- At small quark masses, we should see a *chiral regime* with corresponding hadron degeneracies.
 - No chiral transformation $\pi \leftrightarrow \rho \Rightarrow$ expect different masses.
 - No $D\chi SB \Rightarrow \pi$ is no longer a pseudo-Goldstone boson.
- At large quark masses, we should see a *constituent regime* of weakly-interacting constituent quarks.
 - Baryons $m_N \simeq m_\Delta \simeq 3m_Q$, mesons $m_\pi \simeq m_\rho \simeq 2m_Q$.
- N, Δ should be degenerate at all quark masses;
 - Via $SU(2)_L \times SU(2)_R$ symmetry at low mass,
 - Both composed of 3 dressed quarks at high mass.

VR constituent quark mass

VR Meson Spectrum: Chiral Regime

- Restoration of $U(1)_A$ symmetry \rightarrow degeneracy of π and ground state a_0 .
- Restoration of SU(2)_L × SU(2)_R symmetry → degeneracy of *ρ* and ground state *a*₁.

VR Spectrum: the *a*₀

Chiral regime:

• Restoration of $U(1)_A$ symmetry \rightarrow degeneracy of π and ground state a_0 .

Constituent regime:

- Can't form the quantum numbers of the *a*₀ with quarks at rest.
- The *a*⁰ mass should be the lower of two possibilities:
 - π - η state with mass $2 m_{\pi}$, or
 - Two dressed quark masses with the lowest non-trivial momentum to provide overlap with an *l* = 1 orbital angular momentum state.

VR Spectrum: the a_0

Define ratio

$$R_1 = \frac{m_{a_0}}{2 m_\pi}$$

• Chiral regime $m_{a_0} = m_{\pi}$,

$$R_1 \rightarrow \frac{1}{2}$$

· Constituent regime:

$$R_1
ightarrow egin{cases} 1 & (\pi - \eta ext{ state}) \ rac{2 \, E_q}{4 \, m_q \, ext{cons.}} \end{array}$$
 (two-quark state)

*a*₀, Chiral Regime

*a*₀, Chiral Regime

VR Spectrum: the *a*₁

Chiral regime:

 Restoration of SU(2)_L × SU(2)_R symmetry → degeneracy of ρ and ground state a₁.

Constituent regime:

- The *a*₁ should be the lower of two possibilies:
 - A ρ - η state, or
 - Two dressed quark masses with the lowest non-trivial momentum.

VR Spectrum: the a_1

Define ratio

$$R_2 = \frac{m_{a_1}}{2 m_{\rho}}$$

• Chiral regime $m_{a_1} = m_{\rho}$,

$$R_2 \rightarrow \frac{1}{2}$$

• Constituent regime $(m_{\rho} = m_{\pi})$:

$$R_2
ightarrow egin{cases} 1 & (
ho - \eta ext{ state}) \ rac{2 \, E_q}{4 \, m_q \, ext{cons.}} & (ext{two-quark state}) \end{cases}$$

*a*₁, Chiral Regime

*a*₁, Chiral Regime

Summary (1)

- Static quark potential;
 - Vortex removal removes linear potential.
 - Vortex-only configs recreate $\sim 2/3$ of string tension.
 - Identification procedure imperfect.
- · Connection to instanton degrees of freedom
 - Vortex removal destabilizes instantons under cooling.
 - Vortex-only creates instantons under cooling.
 - No one-to-one correspondence between objects on vortex only and untouched configurations.
 - Identical structure across ensembles
 - Vortices contain the 'seed' of instantons.

Summary (2)

- Overlap quark propagator;
 - Loss of dynamical mass generation with vortex removal.
 - Dynamical mass generation recreated by vortex-only background.
- Hadron spectrum;
 - Chiral symmetry restoration in light quark regime.
 - Weakly interacting theory of constituent quarks at heavy quark mass.
 - Pion is no longer a Goldstone boson.

Conclusion

Conclusion

Conclusion

Conclusion

Centre vortices contain all information necessary to reproduce $D\chi$ SB in SU(3) gauge theory.

Extra Slides

Table : Fitted masses of the pion, rho, nucleon, and Δ as a function of the bare quark mass, m_q .

$m_q \; (MeV)$	m_{π} (MeV)	$m_ ho$ (MeV)	m_N (MeV)	$m_\Delta~({ m MeV})$
13	85(3)	171(7)	219(6)	260(10)
25	132(4)	203(5)	272(7)	295(7)
38	173(4)	228(5)	316(7)	334(6)
50	213(4)	257(4)	365(5)	378(5)
100	366(3)	386(3)	572(5)	575(5)
126	439(3)	453(3)	676(4)	676(4)
151	510(3)	521(3)	780(4)	779(4)
177	578(3)	588(3)	881(4)	880(5)

Static quark potential with cooling

Static quark potential in full QCD

PACS-CS ensemble, $m_{\pi} \simeq 297 \text{ MeV}$

Polyakov phase in full QCD

Danzer, Gattringer, Borsanyi and Fodor, PoS LATT2010 (176), arXiv:1010.5073