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Renormalization of singlet quark bilinear operators
The aim of the project is the investigation of the non-perturbative
renormalization of flavor singlet operators.

The strange quark contribution to the spin of the nucleon is an
example of computation that requires the knowledge of singlet
renormalization constants:1
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∆Σ + Lq + ∆G ∆Σ = ∆u + ∆d + ∆s

Challenges:

I Determination of disconnected contributions

I Fermion contribution to the renormalization of T̂µν
I Mixing with gluonic observables

1G. S. Bali et al, Phys. Rev. Lett. 108, 222001



The RI’-MOM scheme
The renormalization constants in the RI’-MOM scheme are defined
by the renormalization condition

1

12
Z−1
q ZΓTrspin,color(ṼΓ(p)ṼBorn

Γ (p)−1) = 1 ,

where ṼΓ(p) is the amputated vertex function for the operator Γ at
momentum p. The scale is set as µ2 = p2.

The contraction of quark fields of the vertex function

VΓ(p) =
∑
x ,y ,z

exp {−ip(x − y)}〈ψ(x)ψ̄(z)Γψ(z)ψ̄(y)〉 ,

gives rise to connected

VΓ(p) =
∑
x ,y ,z

exp {−ip(x − y)}〈γ5S(z , x)†γ5ΓS(z , y)〉

and disconnected contributions

VΓ(p) = −Nf

∑
x ,y ,z

exp {−ip(x − y)}〈S(x , y)Tr0(ΓS(z , z))〉 .



Ensembles analized
We perform the non-perturbative computation of the
renormalization constants on the Nf = 2 QCDSF ensembles2

β = 5.20 β = 5.29 β = 5.40

a[fm] 0.081 0.071 0.060

r0/a 5.454(20) 7.004(54) 8.285(74)

Mπ[MeV] 600-300 420-150 490-260

We measure the vertex function on 100 Landau gauge fixed
configurations for each ensemble. We compute Tr0(ΓS(z , z)) with
20 stochastic estimators.

For the matching with perturbation theory and the computation of
the conversion factors, we use r0ΛMS = 0.789(52).3

2M. Göckeler et al. Phys. Rev. D 82, 114511; G. S. Bali et al. Phys. Rev. D 91, 054501; G. S. Bali et al. Nucl.
Phys. B 866, 1-25

3ALPHA Collaboration, Nucl. Phys. B 865, 397-429



The tensor operator
The tensor operator σµν has only a small difference when
comparing singlet versus non singlet renormalization constants

Symmetric direction of the momenta pn = 2π
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The tensor operator
The tensor operator σµν has only a small difference when
comparing singlet versus non singlet renormalization constants:



The axial vector operator
The axial vector operator γ5γµ has only a small difference when
comparing singlet versus non singlet renormalization constants:



The axial vector operator
The axial vector operator γ5γµ has only a very mild dependence on
the pion mass.



The pseudoscalar operator
The singlet pseudoscalar operator γ5, unlike its triplet counterpart,
is not expected to develop a pole for mq → 0. Large difference for
small momenta:



Calculation of RGI renormalization constants
The calculation of the renormalization group invariant ZRGI

Γ

(independent from scheme and scale) is performed in two steps.

1. Conversion to the MS scheme: requires the computation in
perturbation theory of ZMS

RI’-MOM(µ).

2. Absorb the dependence of ZMS(µ) on µ using ∆ZMS(µ)

∆ZMS(µ) =

(
2β0

gMS(µ)2

16π2

)− γ0
2β0

exp

{∫ gMS(µ)
0

(
γMS(g ′)

βMS(g ′)
+ γ0

β0g ′

)
d g ′
}
.

Requires the computation of scale dependence of the operator
Γ in the MS scheme defined by γMS = −µ d

dµ logZMS(µ).

Finally, ZRGI
Γ is left only with a lattice spacing dependence

ZRGI
Γ (a) = ∆ZMS(µ)ZMS

RI’-MOM(µ, a)ZRI’-MOM(µ, a) . (1)



Calculation of RGI renormalization constants
The renormalization group invariant constant ZRGI

A has still a
remaining µ dependence at large µ due to “lattice artefacts”.

“Window problem”: ΛQCD � µ� 1
a



Calculation of RGI renormalization constants
Solution: combined fit of all data following the ansatz

F (ZRGI
A , a2µ2) = ZRGI

A + c1a
2µ2 + c2(a2µ2)2 + . . .



Renormalization group invariants renomalization constants
After performing the subtraction of the lattice artefacts, we can
finally extract the RGI renormalization constants

Singlet ZRGI

ZRGI, S
A = 0.815( 7)( 30

−1)

ZRGI, S
P = 0.430(10)( 10

−20)

ZRGI, S
T = 0.896(12)( 10

−4)

ZRGI, S
S = 0.29(1)( 3

−2)

Triplet ZRGI

ZRGI, N.S.
A = 0.7647(14)

ZRGI, N.S.
P = 0.3544(61)

ZRGI, N.S.
T = 0.9137(48)

ZRGI, N.S.
S = 0.4585(61)

PRELIMINARY RESULTS!!! Consistent picture with Chambers et
al. Phys. Lett. B740 (2015) 30-35 for ZA and ZS .



Consistency check for the scalar singlet RC
The renormalized quark mass can be defined from the vector Ward
identities

amR
VWI(µ) =

1

Z s.
S (µ)

(
1

2κ
− 1

2κc

)
,

or from the axial Ward identities (PCAC mass)

amR
PCAC(µ) =

Zn.s.
A (µ)

Zn.s.
P (µ)

mbare
PCAC .

Therefore we must have

1

Z s.
S

=
Zn.s.
P (µ)

Zn.s.
A (µ)

,

or equivalently, multiplying both members by Zn.s.
S

4

rm =
Zn.s.
S

Z s.
S

=
Zn.s.
S (µ)Zn.s.

A (µ)

Zn.s.
P (µ)

.

4G. S. Bali et al., Phys. Rev. D 93, 094504 (2016)



Consistency check for the scalar singlet renormalization
constant

From the formulas above, we have

rm(β = 5.29) =
Zn.s.
A (µ)

Zn.s.
S Zn.s.

P (µ)
= 1.314(20)

rm(β = 5.29) =
Zn.s.
S (µ)

Z s.
S (µ)

= 1.54(9)

rm(β = 5.40) =
Zn.s.
A (µ)

Zn.s.
S Zn.s.

P (µ)
= 1.205(14)

rm(β = 5.40) =
Zn.s.
S (µ)

Z s.
S (µ)

= 1.31(6)

In the continuum rm = 1; rm 6= 1 on the lattice for Wilson
fermions. The non-perturbative determination of singlet
renormalization constants is consistent within 2.5σ.



Summary and outlook
Conclusions:

I The computation of singlet renormalization constants seems
feasible at the cost of O(20) times more computational
resources

I Final error on ZRGI of the order of 3− 10 %

Further measurements are required to extrapolate to the chiral
limit.
Outlook:

I Perform the computation on the Nf = 3 CLS ensembles
(smaller lattice spacings → milder window problem)

I Consider the renormalization of operators with derivatives

Thanks to all the RQCD collaboration for the help!


