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Can non-Abelian gauge theories also demonstrate 
this alternate mechanism of fermion mass generation?
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Partition function of a non-Abelian gauge theory (formal, continuum, finite volume)

background gauge field
integration

weight of the
background gauge field

anti-Hermitian operator 
depends on the gauge field

D(A) = (�µ@µ � iAµ)

Z =

Z
[dA] e�SG (A)

Z
[d d ] e� D(A)  
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Partition function of staggered fermion lattice field theories  
in the fermion bag approach.

Z =
X

B

e�S(B)

Z
[d d ] e� W (B)  

sum over fermion bag 
configurations

weight of a 
fermion bag configuration

anti-Hermitian “fermion bag” matrix
depends fermion bag configuration
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Topological charge of a fermion bag Q = n
even

� n
odd

Index theorem: Q = n+ � n�

Fermion bag Dirac operator

W (B) =

✓
0 C (B)

�C (B)T 0

◆even odd
even
odd

has at least zero modes.|Q|W (B)

even odd
even

odd⌅B =

✓
1 0
0 �1

◆
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Let n± be the number of zero modes of W (B)

that are also eigenvalues of ⌅B with eigenvalues ±1.
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h 
x ,a x ,b  y ,a y ,bi =

Z
[d d ] e�S  

x ,a x ,b  y ,a y ,b

Fermion bilinear correlation function

If B = B1 + B2 + … then, it vanishes unless x and y are in the same bag!

At sufficiently large coupling U  
all two point correlation functions will exponentially decay!

Non-zero! Zero!
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As in QCD Chiral Susceptibility can get contributions from Q=0,1 sectors. 

A necessary condition is that fermion bags span the entire volume for SSB!

As in QCD spontaneous chiral symmetry breaking requires � ⇠ ⌃2V

This implies that the smallest non-zero eigenvalues in the Q=0 
must sector scale as

� ⇠ 1

⌃V

But at large U fermion bags are small. Smallest eigenvalues � 6⇠ 1

⌃V

At large U, unlike QCD no SSB, but fermions are still massive!

Analogy with QCD?
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In 2D we find evidence for a single 
asymptotically free (massive) phase

Symmetric
Massive

U = 0 U = ∞
work in progress
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Four-fermion Condensate Mechanism: C
Four-fermion condensate can form while preserving symmetries that 
ensure fermion bilinear condensates vanish. But, fermions can still 
become massive. Nf = 2 interacting fermion model is one example.



The concepts of topology and index theorems  
that arise in the context of QCD, 

have analogies in simple fermion lattice field theories  
with staggered fermions,  

when formulated in the fermion bag approach

Summary

This connection gives a more complete perspective 
on fermion mass generation mechanisms,  

including a mechanism where fermions acquire a mass  
through four-fermion condensates instead of 

fermion bilinear condensates.

Can non-Abelian gauge theories also demonstrate 
this alternate mechanism of fermion mass generation?


