Fermion bags, topology
and Index theorems

Shailesh Chandrasekharan
(Duke University)

work done in collaboration with V. Ayyar

Lattice 2016, Southampton UK

\ Supported by:
.p US Department of Energy, Nuclear Physics Division







summary



summary

The concepts of topology and index theorems
that arise in the context of QCD,
have analogies in simple termion lattice field theories
with staggered fermions,
when formulated in the fermion bag approach



summary

The concepts of topology and index theorems
that arise in the context of QCD,
have analogies in simple termion lattice field theories
with staggered fermions,
when formulated in the fermion bag approach

This connection gives a more complete perspective
on fermion mass generation mechanisms,
including a mechanism where fermions acquire a mass
through four-fermion condensates instead of
fermion bilinear condensates.



summary

The concepts of topology and index theorems
that arise in the context of QCD,
have analogies in simple termion lattice field theories
with staggered fermions,
when formulated in the fermion bag approach

This connection gives a more complete perspective
on fermion mass generation mechanisms,
including a mechanism where fermions acquire a mass
through four-fermion condensates instead of
fermion bilinear condensates.

Can non-Abelian gauge theories also demonstrate
this alternate mechanism of fermion mass generation??
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Partition function of staggered fermion lattice field theories
In the fermion bag approach.
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Example of a Fermion Bag Approach

Consider free massive staggered fermions:

5= 52 o (Puthria = Pusaths) + m Lt

T

Z JXDway
X,y

D is an anti-Hermitian matrix of the form

even odd even odd
B 0 C \ even - 1 0 even
— \ —=CT" 0 ) odd - 0 —1 / odd

D= =—=D
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Topology and index theorem for a fermion bag

Topological charge of afermionbag & = Neyen — Nodd
Fermion bag Dirac operator define
even odd even odd
By 0 C(B) oven _ B 1 O even
(B) = -C(B)T 0 odd 57 L0 —1 ) ow

Let nt be the number of zero modes of W(B)

that are also eigenvalues of Zg with eigenvalues +1.

Index theorem:  Q = ny — n_

W(B) has at least |Q| zero modes.
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1 QCD Chiral Condensate

Partition function gets contribution only from Q = O sector.

- / [dAq=o] e~>¢"2=) Det(D(Aq=0))

Chiral Condensate gets contribution from the sector with topological charge one.

o) = 2 / @4 dd vl e {3 [ d'xB(ut0)

W) = 7 [ [dAg e Seter) (ITAe-)

Anomalous chiral symmetry breaking!
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5= 5 2 e (Pbesa ~Brati) + m bt
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Anomalous chiral symmetry breaking ~ Explicit chiral symmetry breaking
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Nf = 2 QCD

Chiral condensate vanishes due to additional chiral symmetries! (1)) = 0

Chiral susceptibility is non-zero and gets contribution from the sectors, Q = 0 and Q=1.

<= 5y [leadide { [axiuea} { [ dvimem}

X = % / [dAo—o] e~ 5¢(A=0) Det(D(Ag—o)) {Z\:%} + .

. . . 2
Spontaneous chiral symmetry breaking requires X 7~ 2V

1

This implies that the smallest non-zero eigenvalues in the Q=0 must scale as A ~ SV
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Action (Nf = 2 model)
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Action (Nf = 2 model)

S = % Z Nx, o (@x,i%ﬁrwi - @Ha’"wx”')

x,o,1=1,2

— U Z Ex,lwx,lax,Z@bXQ

Ayyar, SC, PRD91 (2015) 6, 065035, PRD93 (2016) 8, 081701, arXiv:1606.06312

Partition function

1.7

Z= [1d0] e ML+ U dnauateatiea)

7= eklosV) (Det(v\/(B)))2

B

Chiral condensate vanishes

(b)) = 0

L4

yeey

Py
-®

.’.
-.?.-

’-’-I (
-9999-

9090000000000 0--

209009

.
.’.
A

00009

©
©
©
®

-0 000-;

;
©
¢
©

gteerees
l_._‘_l I —

009
-909-00-

14
0
LA
© €
b
L oy
0
LA d
A
o
A

9990059909
9000000000 -9
0000000000

-0 909
'¢';¢'¢': Poa

499
_¢__!
s 4



Fermion bilinear correlation function

<¢X,3¢X,b wy,awy,b> — / [d@dw] e_S wx,awx,b wy,awy,b

It B=B1+ B2 + ... then, it vanishes unless x and y are in the same bag!



Fermion bilinear correlation function

<¢X,3¢X,b wy,a¢y,b> — / [d@dlb] e_S ¢X,3¢X,b wy,a¢y,b

It B=B1+ B2 + ... then, it vanishes unless x and y are in the same bag!

e
99 -
-99

-
-90009-:-

Rie,
009000000 -
80686 o

$9- 909999094

999000
8-

9909

:"""""'

- 0000
90000006060 -4

A_¢_A
-0
909009

Non-zero!



Fermion bilinear correlation function

<¢X,3¢X,b wy,awy,b> — / [d@dlb] e_S wx,awx,b wy,a¢y,b

then, it vanishes unless x and y are in the same bag!
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<¢X,3¢X,b wy,a¢y,b> — / [d@dlb] e_S wx,awx,b wy,a¢y,b
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At sufficiently large coupling U
all two point correlation functions will exponentially decay!
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Analogy with QCD?

As in QCD Chiral Susceptibility can get contributions from Q=0,1 sectors.

As in QCD spontaneous chiral symmetry breaking requires  xy ~ Y2V

1
This implies that the smallest non-zero eigenvalues inthe Q=0 A ~ —

2V
must sector scale as

A necessary condition is that fermion bags span the entire volume for SSB!

1

But at large U fermion bags are small. Smallest eigenvalues A +« sV

At large U, unlike QCD no SSB, but fermions are still massive!
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S- -
U=0 U U=o
c

Broken
Massive

In 3D there is evidence for a single
exotic transition

PRD91 (2015) 6, 065035,
PRD 93 (2016), 081701

In 4D we find evidence
for a narrow intermediate
spontaneously broken phase

arXiv:1606.06312

In 2D we find evidence for a single
asymptotically free (massive) phase

WOork in progress
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Origin of Fermion Masses

Bilinear Condensate Mechanism: A

Fermion bilinear condensates form due to anomalous or explicit
chiral symmetry breaking through topological space-time defects.
Examples: Nf=1 QCD, Nf =1 massive free staggered fermions

Bilinear Condensate Mechanism: B
Fermion bilinear condensates form due to spontaneous breaking of

symmetries that prevent their formation.
Nf = 2 QCD is an example of this phenomena.

Four-fermion Condensate Mechanism: C

Four-fermion condensate can form while preserving symmetries that
ensure fermion bilinear condensates vanish. But, fermions can still
become massive. Nf = 2 interacting fermion model is one example.



summary

The concepts of topology and index theorems
that arise in the context of QCD,
have analogies in simple termion lattice field theories
with staggered fermions,
when formulated in the fermion bag approach

This connection gives a more complete perspective
on fermion mass generation mechanisms,
including a mechanism where fermions acquire a mass
through four-fermion condensates instead of
fermion bilinear condensates.

Can non-Abelian gauge theories also demonstrate
this alternate mechanism of fermion mass generation??



