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Introduction
Technicolor (TC) theories are SU(N) gauge field theories with Nf
massless fermions. They solve i.e. the fine-tuning problem by substi-
tuting SM Higgs scalar with the chiral condensate. Standard Model
fermion masses are typically assumed to arise from extended TC
(ETC) interactions, since classical TC scenario does not explain them.
However, ETC theory requires walking of the coupling constant i.e.
g ∼ g∗ over large scale separation.

Conformal window

Ref. [Appelquist, Lane, Mahanta, Cohen, Georgi, Yamawaki, Schrock, Sannino, Tuominen,
Dietrich]

If the β-function of a theory β = µdgdµ is zero at g∗, the theory has
an infrared fixed point (IRFP). Conformal window is the range of Nf
where the IRFP exists. The walking coupling can be found near the
lower edge of the conformal window, whereas below it, chiral symme-
try gets broken. A theory with IRFP has scale invariant long distance
behaviour, and by observing the mass spectrum we can study if the
theory is inside the conformal window. When mQ→ 0, if

• pions gets massless as mπ ∝ m
1/2
Q → QCD-like chiral symmetry

breaking.

• all states gets massless as M ∝ m
1

1+γ(g2∗)
Q → IRFP

– the factor γ(g2∗) is the mass anomalous exponent.
IRFP is found at strong coupling, where perturbative analysis is not

valid and thus lattice simulations are required.

SU(2) theory with Nf = 2, 4, 6 and 8 fundamental rep-
resentation fermions
On the lattice, there exists clear evidence for chiral symmetry break-
ing for Nf = 2 and 4, and the existence of an IRFP at Nf = 8 and
10 [1,2], but for Nf = 6 a clear picture has not yet emerged due to the
conflicting results in the literature eg. [1, 3–5].

Our goal is to study the hadron spectrum and scale-setting when ap-
proaching the conformal window.
•Method: we use

– HEX smeared Wilson clover action for fermions
– thin link Wilson + stout link Wilson for gauge fields.
• Lattice sizes: 243 × 48, and 323 × 60 for small amQ.
•Number of configurations: 80-200.
• Scale setting with gradient flow.

Results

Hadron spectrum
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Figure 1: Pion and rho masses in Nf = 2, 4, 6 and 8 with different values of β.
Square root dependence is fitted to pion mass in Nf = 2 and 4. In Nf = 6 and 8
M ∝ m

1/1+γ
Q with the same γ in pion and rho masses (see table 1). Points with

yellow centers refer to 323 × 60 lattice, and others are with 243 × 48 lattice.

In fig. 1 the pion and the rho masses are presented as a function of
the quark mass with different Nf and β. We found:

•Nf = 2: pions behave exactly as expected, i.e. they become mass-
less ∝ √mQ. Due to the familiarity of this scenario we do not
attempt to reach very small quark masses.

•Nf = 4: finite volume effects are stronger than what we expected,
and the square root behaviour can be found only at small amQ.

•Nf = 6: pion and rho masses ∝ m
1/1+γ
Q , the values of γ can be

found from table 1. The finite volume effects can be clearly seen.

•Nf = 8: spectrum shows very strong finite size effects already at
quite big amQ→ mass measurements unreliable?

If we want to reach small quark masses, we should use bigger vol-
umes (which quickly becomes expensive) or use really strong bare
coupling (small β).

Nf β γ γSD
6 0.5 0.382(12) 0.280(2)

0.6 0.314(7) 0.231(2)
0.8 0.248(3) ∼ 0.16

8 0.6 0.293(30) ∼ 0.13
0.8 0.238(31) 0.111(1)

Table 1: We have also measured the factor γ of these theories by using the spectral
density method (details: poster by Joni Suorsa [6]). Mass spectrum suggests bigger
γ than what the spectral density theorem γSD gives.

Decay constants
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Figure 2: Pion decay constant. Yellow centers refer to the bigger lattice.

Pion decay constants as a function of quark mass are presented in
fig. 2. We fitted a linear function to the decay constant in Nf = 2 and
4, since a theory with chiral symmetry breaking should have a finite
intercept as mQ→ 0.

•Nf = 2 is clear: Fπ has a finite value, when mQ→ 0.

• The case Nf = 4 is more difficult:

– β = 0.6: behaves as expected and has a positive Fπ at mQ = 0.
– β = 0.8 and 1: Fπ gets too small compared toLFπ, L is the lattice

size, that we cannot say for sure what happens, when mQ→ 0.

•Nf = 6: pion decay constant ∝ m
1/1+γ
Q as we assume a theory

with IRFP to behave.

Scale setting: gradient flow
The scale setting procedure in lattice QCD is needed in order to relate
the lattice scale to some physically known quantity. Presently, the gra-
dient flow approach [7] has become the preferred choice for that. It
is an artificial way to set the scale, but it is known to be very precise,
cheap and straightforward to implement.

•Wilson flow

– solve t0 from: t20 〈E(t0)〉 = 0.3

∗E(t) = continuum-like action density at flow time t
– related observable w0 [8]: solve t ddt(t

2 〈E(t)〉)|t=w2
0
= 0.3

These two scales, t0 and w0, do not differ much, so here we use t0.
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Figure 3: Results of the a/
√
t0 scale. Yellow symbols refer to the 323 × 60 lattice.

The behaviour of a/
√
t0 is shown in fig. 3. If we use

√
t0 to fix the

scale:

• smaller a/
√
t0 means a smaller lattice spacing a→ for fixed amQ

the quarks are heavier.

• harder to reach the small physical quark mass region, when Nf or
β are increased.

If the theory has IRFP, the scale should be invariant in the infrared,
and we expect a/

√
t0 → 0 as mq → 0. Nf = 2 and 4 seem to a

finite intercept at mQ = 0, whereas Nf = 6 and 8 are not obvious.
Especially at Nf = 8 we expect strong finite volume effects at small
mQ.
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Figure 4: Results in physical units. All of our measurements fall on a “universal”
curve. The reasons for this scaling is currently unclear.

In fig. 4 we plot mρ/mπ against the ”physical” quark mass mQ
√
t0.

Remarkably, all of our measurements fall on an “universal” curve, in-
dependent of Nf or the lattice spacing. We found:

•Nf = 2: the ratio diverges as mQ→ 0.

•Nf = 4: follows Nf = 2, but much more slowly. Small β is re-
quired to reach large mρ/mπ.

•Nf = 6: two types of behaviour

– β = 0.5 and 0.6: the points slowly grow along the curve.

– β = 0.7 and 0.8: the points remain fixed at mQ
√
t0 = 0.4 and

0.6, respectively.

•Nf = 8: the points turn around at mQ
√
t0 = 0.6 → finite size

effects?

Conclusions

In our study of SU(2) theory with Nf =2, 4, 6 and 8 fundamental rep-
resentation fermions we have focused on the hadron spectrum, decay
constants and the gradient flow scale setting. For the mass spectrum,
our central finding is that the finite volume effects are stronger than ex-
pected, making it difficult to reach the chiral small quark mass regime
even at Nf = 4. Therefore we are forced to use small β (strong bare
coupling) in order to reach the small quark masses.

Considering the scale setting, our main observation is that smaller
physical quark masses can be reached by decreasing Nf or β. By
plotting the mass ratio mρ/mπ against mQ

√
t0, we observe that all

our measurements fall on a universal curve, but the reason for that is
currently unknown.

Forthcoming Research

•Define the glueball masses and the string tension.

•Do the scalar measurement.

• In the future: SU(3) theory with fundamental fermions.
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