Parity doubling of nucleons, Δ and Ω baryons across the deconfinement phase transition

Davide De Boni

with G. Aarts, C. Allton, S. Hands, B. Jäger, C. Praki, J.-I. Skullerud

Southampton, 29 July 2016

Contents

- 1 Chiral symmetry in a nutshell
- **2** Study of parity doubling for N, Δ and Ω baryons
 - · Correlators
 - · Spectral functions

[1607.05082v1] [PRD 92 (2015) 014503] [1502.03603v2]

 $m_q = 0 \Rightarrow$ chiral symmetry of QCD action

$$\psi' = \mathrm{e}^{\mathrm{i} \alpha \gamma_5 T_i} \, \psi \; , \qquad \bar{\psi}' = \bar{\psi} \, \mathrm{e}^{\mathrm{i} \alpha \gamma_5 T_i}$$

 T_i generators of SU(N_f), $i=1,\ldots,N_f^2-1$

 $m_q = 0 \Rightarrow$ chiral symmetry of QCD action

$$\psi' = \mathrm{e}^{\mathrm{i}\alpha\gamma_5 T_i} \, \psi \; , \qquad \bar{\psi}' = \bar{\psi} \, \mathrm{e}^{\mathrm{i}\alpha\gamma_5 T_i}$$

 T_i generators of SU(N_f), $i=1,\ldots,N_f^2-1$

Positive and negative parity baryonic correlators (zero momentum)

$$C_{\pm}(au) = \int\!\mathrm{d}\mathbf{x}\, \langle \mathrm{tr}\, O(\mathbf{x}, au) P_{\pm} \overline{O}(\mathbf{0},0)
angle \,, \qquad P_{\pm} = rac{1}{2} (\mathbb{1} \pm \gamma_4)$$

For nucleon
$$O(\mathbf{x}, au) = \epsilon_{abc} u_a(\mathbf{x}, au) \left(u_b^{\mathrm{T}}(\mathbf{x}, au) C \gamma_5 d_c(\mathbf{x}, au) \right)$$

 $m_q = 0 \Rightarrow$ chiral symmetry of QCD action

$$\psi' = e^{i\alpha\gamma_5 T_i} \psi , \qquad \bar{\psi}' = \bar{\psi} e^{i\alpha\gamma_5 T_i}$$

 T_i generators of SU(N_f), $i=1,\ldots,N_f^2-1$

Positive and negative parity baryonic correlators (zero momentum)

$$C_{\pm}(au) = \int\!\mathrm{d}\mathbf{x}\, \langle \mathrm{tr}\, O(\mathbf{x}, au) P_{\pm} \overline{O}(\mathbf{0},0)
angle \,, \qquad P_{\pm} = rac{1}{2} (\mathbb{1} \pm \gamma_4)$$

For nucleon
$$O(\mathbf{x}, \tau) = \epsilon_{abc} u_a(\mathbf{x}, \tau) \left(u_b^{\mathrm{T}}(\mathbf{x}, \tau) C \gamma_5 d_c(\mathbf{x}, \tau) \right)$$

$$C_{+}(\tau) \approx A_{+} e^{-M_{\pm}\tau} + A_{\pm} e^{-M_{\mp}(a_{\tau}N_{\tau}-\tau)}$$

Chiral symmetry $\Rightarrow C_{+} = -C_{-} \Rightarrow M_{+} = M_{-}$

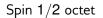
In Nature (T=0) $M_{N^*}-M_Npprox 600$ MeV $\gg m_{u,d}pprox 5$ MeV

• Explicit chiral symmetry breaking ($m_{u,d} \neq 0$) is not enough to account for this big difference

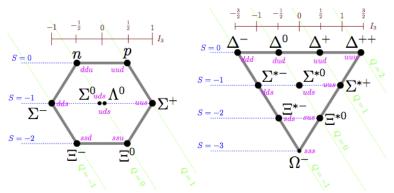
In Nature (T=0) $M_{N^*}-M_Npprox 600$ MeV $\gg m_{u,d}pprox 5$ MeV

• Explicit chiral symmetry breaking ($m_{u,d} \neq 0$) is not enough to account for this big difference

 \Rightarrow Chiral symmetry is spontaneously broken at ${\it T}=0$


In Nature (T=0) $M_{N^*}-M_Npprox 600$ MeV $\gg m_{u,d}pprox 5$ MeV

- Explicit chiral symmetry breaking ($m_{u,d} \neq 0$) is not enough to account for this big difference
- \Rightarrow Chiral symmetry is spontaneously broken at T=0
 - What happens at high temperature?
 - Parity restoration above T_c for N and Δ baryons Even if chiral symmetry is slightly explicitly broken by $m_{u,d}$ and lattice artefacts Wilson fermions \rightarrow No chiral symmetry at short distances
 - Signal of parity restoration for Ω around T_c Chiral symmetry is strongly explicitly broken by $m_s \approx 100$ MeV



Name	N	Δ	٨	Σ	Ξ	Ω
Isospin	1/2	3/2	0	1	1/2	0
Strangenes	0		-1		-2	-3
Number of s-quarks	0		1		2	3

Spin 3/2 decuplet

Lattice setup

FASTSUM ensembles and tuning by HadSpec collaboration

- $N_f = 2 + 1$ non-perturbatively improved Wilson fermions
- Anistropic lattice: $a_s/a_\tau=3.5$, $a_\tau^{-1}\approx 5.6$ GeV ightarrow Important for constructing spectral functions
- $T=rac{1}{a_{ au}N_{ au}}$ varies by changing $N_{ au}$ from 128 to 16
- Large volume of the box $\sim (3\,\text{fm})^3$, $N_s=24$
- Degenerate u and d quarks, heavier than physical ones $(m_\pi=384(4) \text{ MeV}, m_\pi/m_\rho=0.466(3))$
- Physical strange quark mass
- Gaussian smearing on both source and sink to enhance ground state signal

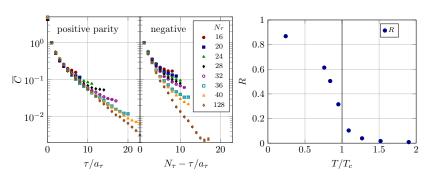
R factor for measuring parity doubling

$$R(\tau) \equiv \frac{C(\tau) - C(1/T - \tau)}{C(\tau) + C(1/T - \tau)}$$

- * No parity doubling and $\emph{M}_{-}\gg\emph{M}_{+}\Rightarrow\emph{R}(au)=1$, $0\leq au<1/(2\emph{T})$
- Parity doubling $\Rightarrow R(au) = 0$
- Note that $R(1/T-\tau)=-R(\tau)$ and R(1/(2T))=0

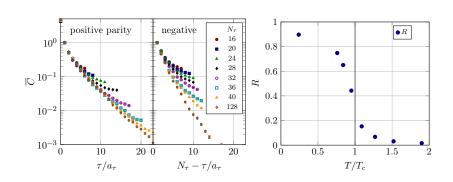
We consider the weighted average

[Datta, Mathur et al. (2013)]


$$R \equiv \frac{\sum_{n=1}^{N_{\tau}/2-1} R(\tau_n) / \sigma^2(\tau_n)}{\sum_{n=1}^{N_{\tau}/2-1} 1 / \sigma^2(\tau_n)}$$

Technical note: Smearing essential to have a clear ground state

Nucleon (spin 1/2)



- Nucleon ground state largely independent of temperature
- Negative parity partner much more sensitive to temperature
- Strong signal of parity restoration around T_c

Δ -baryon (spin 3/2)

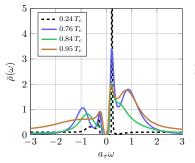
- \bullet Δ baryon ground state largely independent of temperature
- Negative parity partner much more sensitive to temperature
- Strong signal of parity restoration around deconfinement transition (tied to restoration of chiral symmetry)

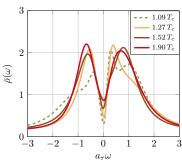
Spectral functions

For baryons:

$$egin{split} \mathcal{C}_{\pm}(au,\mathbf{p}) &= \int_{-\infty}^{+\infty} rac{\mathrm{d}\omega}{2\pi} \,
ho_{\pm}(\omega,\mathbf{p}) \, rac{\mathrm{e}^{-\omega au}}{1+\mathrm{e}^{-\omega/T}} \,, \qquad
ho_{\pm} = \mathrm{tr}[extbf{ extit{P}}_{\pm}
ho] \end{split}$$

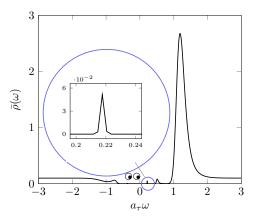
- III-posed problem: To extract $\sim 10^3$ points for $\rho_{\pm}(\omega, {\bf p}={\bf 0})$ given ~ 50 noisy data for $C_{\pm}(\tau, {\bf p}={\bf 0})$
- The Maximum Entropy Method (MEM) is an unbiased method to get a unique solution for ρ_{\pm} [Asakawa et al. hep:lat/0011040v2] [See also Skullerud's talk]


Important property for MEM:
$$\rho_+(\omega, \mathbf{p}) \geq 0 \quad \forall \omega \,, \mathbf{p} \ (\rho_\pm(-\omega, -\mathbf{p}) = -\rho_\mp(\omega, \mathbf{p}))$$



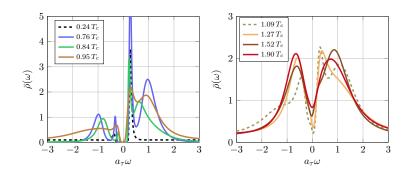
Nucleon (spin 1/2)

$$ar{
ho}(\omega) \equiv rac{1}{a_ au} rac{
ho(\omega)}{\langle C(au=0)
angle_{
m cfg}}$$



- $\omega >$ 0 (+ parity): Very stable ground state below T_c
- + $\omega <$ 0 (- parity): Ground state moves inwards as $au o au_c$
- Very symmetric spectral functions above T_c

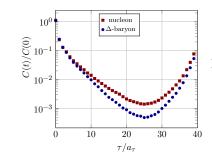
Nucleon ground state without smearing ($T = 0.24T_c$)

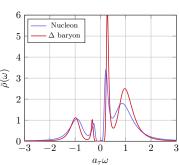


The ground state is at the right place but we need smearing to enhance its signal

Δ -baryon (spin 3/2)

- $\omega > 0$ (+ parity): Very stable ground state below T_c
- $\omega <$ 0 (- parity): Ground state moves inwards as $au o au_c$
- Very symmetric spectral functions above T_c

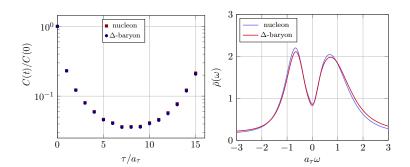




N and Δ below T_c

For ground-states (I = 0):
$$M_\Delta - M_N = \Delta M_{ss} = \frac{8}{3} \left(\frac{\hbar}{c}\right)^3 \frac{\pi \alpha_s}{m_{u,d}^2} |\psi(0)|^2$$

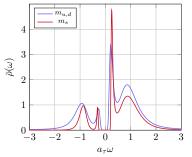
$$\Delta \textit{M}_{\textit{SS}}^{^{+parity}} = \left\{ egin{array}{ll} (293 \pm 2) \text{MeV} & \text{Nature} \, (\emph{m}_{\pi} = 140 \, \text{MeV} \, , \, \emph{T} = 0) \ (274 \pm 96) \text{MeV} & \text{Lattice} \, (\emph{m}_{\pi} = 384 \, \text{MeV} \, , \, \emph{T} = 44 \, \text{MeV}) \end{array}
ight.$$

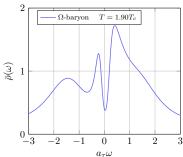


Asymmetric correlators and spectral functions

N and Δ above T_c

- Symmetric correlators and spectral functions (Parity restoration)
- Same correlators and spectral functions for \emph{N} and Δ (GS melted)

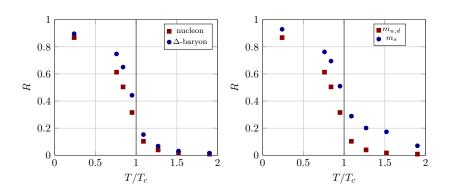




N and Ω

below T_c

above $T_c o$ Parity not yet restored


T/T_{c}	<i>m</i> + [MeV]	<i>m</i> ⁻ [MeV]	
0	1672.4(0.3)	2250? 2380? 2470?	PDG
0.24	1703(159)	2232(380)	

Nucleon vs Ω

Parity restoration

Signal of parity doubling

Both signals occur around T_c

Conclusions and perspectives

Summary

- Negative parity channel more affected by temperature than positive parity channel
- Parity restoration above T_c for N and Δ baryons
- Signal of parity doubling for Ω at T_c
- Chiral symmetry is strongly explicitly broken by $m_{
 m s}$

Outlook

- To use chiral (overlap) fermions
- Finer lattice spacing

