Johan Bijnens

Introduction
FV: masses
and decay
A mesonic
ChPT
program
framework
Two-point
$K_{\ell 3}$ etc
Conclusions

Overview

UNIVERSITY
(5) Masses, $K_{e l l 3}, \ldots$: twisted and staggered at one-loop

- Extra form-factors and Ward identities
- Results: twist+PQ
- Results: staggered
(6) Conclusions

Chiral Perturbation Theory

LUND
UNIVERSITY

```
ChPT at FV
```

 and/or
 twisting
 Johan Bijnens

- ChPT = Effective field theory describing the lowest order pseudo-scalar representation
- or the (pseudo) Goldstone bosons from spontaneous breaking of chiral symmetry.
- The number of degrees of freedom depend on the case we look at
- Recent review of LECs:

JB, Ecker,Ann.Rev.Nucl.Part.Sci. 64 (2014) 149 [arXiv:1405.6488]

Introduction
FV: masses
and decay
A mesonic
ChPT
program
framework

Finite volume

- Lattice QCD calculates at different quark masses, volumes boundary conditions,...
- A general result by Lüscher: relate finite volume effects to scattering (1986)
- Chiral Perturbation Theory is also useful for this
- Start: Gasser and Leutwyler, Phys. Lett. B184 (1987) 83, Nucl. Phys. B 307 (1988) 763 $M_{\pi}, F_{\pi},\langle\bar{q} q\rangle$ one-loop equal mass case
- I will stay with ChPT and the p regime $\left(M_{\pi} L \gg 1\right)$
- $1 / m_{\pi}=1.4 \mathrm{fm}$
may need to (and I will) go beyond leading $e^{-m_{\pi} L}$ terms "around the world as often as you like"
- Convergence of ChPT is given by $1 / m_{\rho} \approx 0.25 \mathrm{fm}$

UNIVERSITY
ChPT at FV and/or twisting

Johan Bijnens

Introduction
FV: masses
and decay
A mesonic
ChPT
program

Finite volume: selection of earlier ChPT results

- masses and decay constants for π, K, η one-loop Becirevic, Villadoro, Phys. Rev. D 69 (2004) 054010
- M_{π} at 2-loops (2-flavour)

Colangelo, Haefeli, Nucl.Phys. B744 (2006) 14 [hep-lat/0602017]

- $\langle\bar{q} q\rangle$ at 2 loops (3-flavour)

JB, Ghorbani, Phys. Lett. B636 (2006) 51 [hep-lat/0602019]

- Twisted mass at one-loop

Colangelo, Wenger, Wu, Phys.Rev. D82 (2010) 034502 [arXiv:1003.0847]

Johan Bijnens

Introduction
FV: masses
and decay
A mesonic
ChPT
program
framework
Two-point
$K_{\ell 3}$ etc
Conclusions

- Twisted boundary conditions

Sachrajda, Villadoro, Phys. Lett. B 609 (2005) 73 [hep-lat/0411033]

Papers

LuND

UNIVERSITY

ChPT at FV and/or
twisting
Johan Bijnens

Introduction
FV: masses
and decay
A mesonic
ChPT
program
framework
Two-point
$K_{\ell 3}$ etc
Conclusions

- Masses, Decay Constants and Electromagnetic Form-factors with Twisted Boundary Conditions, JB, Relefors, JHEP 1405 (2014) 015 [arXiv:1402.1385]
- The vector two-point function with twisted boundary conditions, JB, Relefors, to be published
- $K_{\ell 3}$ wth staggered, finite volume and twisting, Bernard, JB, Gamiz, Relefors, to be published

Masses at two-loop order

LUND

UNIVERSITY

```
ChPT at FV
    and/or
    twisting
```

Johan Bijnens

Introduction
FV: masses and decay

A mesonic ChPT
program
framework
Two-point

- Agreement for $N_{f}=2,3$ for pion
- K has no pion loop at LO

Decay constants at two-loop order

LUND
UNIVERSITY

```
ChPT at FV
    and/or
    twisting
```

Johan Bijnens

Introduction
FV: masses and decay

A mesonic
ChPT
program
framework
Two-point
$K_{\ell 3}$ etc
Conclusions

- Agreement for $N_{f}=2,3$ for pion
- K now has a pion loop at LO

Other p^{6}

LUND
UNIVERSITY

```
ChPT at FV
```

 and/or
 twisting
Johan Bijnens

Program availability

Making the programs more accessible for others to use:

- Two-loop results have very long expressions
- Many not published but available from http://www.thep.lu.se/~bijnens/chpt/
- Many programs available on request from the authors
- Idea: make a more general framework
- CHIRON:

JB,
"CHIRON: a package for ChPT numerical results at two loops,"
Eur. Phys. J. C 75 (2015) 27 [arXiv:1412.0887] http://www.thep.lu.se/~bijnens/chiron/

LUND

UNIVERSITY

ChPT at FV and/or
twisting
Johan Bijnens

Introduction
FV: masses
and decay
A mesonic
ChPT
program
framework
Two-point
$K_{\ell 3}$ etc
Conclusions

Program availability: CHIRON

- Present version: 0.54
- Classes to deal with $L_{i}, C_{i}, L_{i}^{(n)}, K_{i}$, standardized in/output, changing the scale,...
- Loop integrals: one-loop and sunsetintegrals
- Included so far (at two-loop order):
- Masses, decay constants and $\langle\bar{q} q\rangle$ for the three flavour case
- Masses and decay constants at finite volume in the three flavour case
- Masses and decay constants in the partially quenched case for three sea quarks
- Masses and decay constants in the partially quenched case for three sea quarks at finite volume
- A large number of example programs is included
- Manual has already reached 94 pages
- I am continually adding results from my earlier work (remainder of this talk is being worked on)

ChPT at FV
and/or
twisting
Johan Bijnens

Introduction
FV: masses
and decay
A mesonic
ChPT
program
framework
Two-point
$K_{\ell 3}$ etc
Conclusions

Two-point: Why

 plot: $f\left(Q^{2}\right) \hat{\Pi}\left(Q^{2}\right)$ with $Q^{2}=-q^{2}$ in GeV^{2}

Figure and data:
Phys. Rev. D93 (2016) 054508 [arXiv:1512.07555]

Johan Bijnens

Introduction
FV: masses
and decay
A mesonic
ChPT
program
framework
Two-point
(Dis)connected
Twisting
Results
$K_{\ell 3}$ etc
Conclusions

Two-point: Connected versus disconnected

Connected

yellow=lots of quarks/gluons
Disconnected

- $\Pi_{a b}^{\mu \nu}(q) \equiv i \int d^{4} x e^{i q \cdot x}\left\langle T\left(j_{a}^{\mu}(x) j_{a}^{\nu \dagger}(0)\right)\right\rangle$
- $j_{\pi^{+}}^{\mu}=\bar{d} \gamma^{\mu} u$
- $j_{u}^{\mu}=\bar{u} \gamma^{\mu} u, \quad j_{d}^{\mu}=\bar{d} \gamma^{\mu} d, \quad j_{s}^{\mu}=\bar{s} \gamma^{\mu} s$
- $j_{e}^{\mu}=\frac{2}{3} \bar{u} \gamma^{\mu} u-\frac{1}{3} \bar{d} \gamma^{\mu} d-\frac{1}{3} \bar{s} \gamma^{\mu}{ }_{S}$
- Study in ChPT at one-loop:

Della Morte, Jüttner, JHEP 1011 (2010) 154 [arXiv:1009.3783]

LUND
UNIVERSITY
ChPT at FV
and/or
twisting
Johan Bijnens

Introduction
FV: masses and decay

A mesonic
ChPT
program
framework
Two-point
(Dis)connected

Two-point: Connected versus disconnected

- Include also singlet part of the vector current
- There are new terms in the Lagrangian
- p^{4} only one more: $\left\langle L_{\mu \nu}\right\rangle\left\langle L^{\mu \nu}\right\rangle+\left\langle R_{\mu \nu}\right\rangle\left\langle R^{\mu \nu}\right\rangle$
- \Longrightarrow The pure singlet vector current does not couple to mesons until p^{6}
- \Longrightarrow Loop diagrams involving the pure singlet vector current only appear at p^{8} (implies relations)
- p^{6} (no full classification, just some examples)
$\left\langle D_{\rho} L_{\mu \nu}\right\rangle\left\langle D^{\rho} L^{\mu \nu}\right\rangle+\left\langle D_{\rho} R_{\mu \nu}\right\rangle\left\langle D^{\rho} R^{\mu \nu}\right\rangle$, $\left\langle L_{\mu \nu}\right\rangle\left\langle L^{\mu \nu} \chi^{\dagger} U\right\rangle+\left\langle R_{\mu \nu}\right\rangle\left\langle R^{\mu \nu} \chi U^{\dagger}\right\rangle, \ldots$
- Results at two-loop order, unquenched isospin limit

LUND
UNIVERSITY
ChPT at FV and/or
twisting
Johan Bijnens

Introduction
FV: masses
and decay
A mesonic
ChPT
program
framework
Two-point
(Dis)connected
Twisting
Results
$K_{\ell 3}$ etc
Conclusions

Two-point: Connected versus disconnected

- $\Pi_{\pi^{+} \pi^{+}}^{\mu \nu}$: only connected
- $\Pi_{u d}^{\mu \nu}$: only disconnected
- $\Pi_{u u}^{\mu \nu}=\Pi_{\pi^{+} \pi^{+}}^{\mu \nu}+\Pi_{u d}^{\mu \nu}$
- $\Pi_{e e}^{\mu \nu}=\frac{5}{9} \Pi_{\pi^{+} \pi^{+}}^{\mu \nu}+\frac{1}{9} \Pi_{u d}^{\mu \nu}$
- Infinite volume (and the $a b$ considered here):
$\Pi_{a b}^{\mu \nu}=\left(q^{\mu} q^{\nu}-q^{2} g^{\mu \nu}\right) \Pi_{a b}^{(1)}$
- Large $N_{c}+$ VMD estimate: $\Pi_{\pi^{+} \pi^{+}}^{(1)}=\frac{4 F_{\pi}^{2}}{M_{V}^{2}-q^{2}}$
- Plots on next pages are for $\Pi_{a b 0}^{(1)}\left(q^{2}\right)=\Pi_{a b}^{(1)}\left(q^{2}\right)-\Pi_{a b}^{(1)}(0)$
- At p^{4} the extra LEC cancels, at p^{6} there are new LEC contributions, but no new ones in the loop parts

ChPT at FV and/or
twisting
Johan Bijnens

Introduction
FV: masses
and decay
A mesonic
ChPT
program
framework
Two-point
(Dis)connected
Twisting
Results
$K_{\ell 3}$ etc
Conclusions

Two-point: Connected versus disconnected

LUND
UNIVERSITY
ChPT at FV and/or
twisting
Johan Bijnens

Introduction
FV: masses
and decay
A mesonic
ChPT
program
framework
Two-point
(Dis)connected
Twisting
Results
$K_{\ell 3}$ etc
Conclusions

Two-point: Connected versus disconnected

UNIVERSITY

ChPT at FV

and/or
twisting
Johan Bijnens

Introduction
FV: masses
and decay
A mesonic
ChPT
program
framework
Two-point
(Dis)connected
Twisting
Results
$K_{\ell 3}$ etc

Two-point: Connected versus disconnected

ChPT at FV
and/or
twisting
Johan Bijnens

- p^{4} and p^{6} pion part exactly $-\frac{1}{2}$
- not true for unsubtracted at p^{4} (LEC)
- not true for pure LEC at p^{6}
(Dis)connected
Twisting
Results
$K_{\ell 3}$ etc

Two-point: Including strange

LUND
UNIVERSITY
ChPT at FV and/or twisting

Johan Bijnens
ntroduction
FV: masses
and decay
A mesonic
ChPT
program
framework
Two-point
(Dis)connected Twisting
Results
$K_{\ell 3}$ etc

Two-point: with strange, electromagnetic current

UNIVERSITY
and/or
twisting
Johan Bijnens

Introduction
FV: masses
and decay
A mesonic
ChPT
program
framework
Two-point
(Dis)connected Twisting
Results
$K_{\ell 3}$ etc
Conclusions

Twisted boundary conditions

- On a lattice at finite volume $p^{i}=2 \pi n^{i} / L$: very few momenta directly accessible
- Put a constraint on certain quark fields in some directions: $q\left(x^{i}+L\right)=e^{i \theta_{q}^{i}} q\left(x^{i}\right)$
- Then momenta are $p^{i}=\theta^{i} / L+2 \pi n^{i} / L$. Allows to map out momentum space on the lattice much better

Bedaque,...

- Small note:
- Beware what people call momentum: is θ^{i} / L included or not?
- Reason: a colour singlet gauge transformation $G_{\mu}^{S} \rightarrow G_{\mu}^{S}-\partial_{\mu} \epsilon(x), \quad q(x) \rightarrow e^{i \epsilon(x)} q(x), \quad \epsilon(x)=-\theta_{q}^{i} x^{i} / L$
- Boundary condition Twisted \Leftrightarrow constant background field+periodic

LUND

UNIVERSITY
ChPT at FV and/or
twisting
Johan Bijnens

Introduction
FV: masses
and decay
A mesonic
ChPT
program
framework
Two-point
(Dis)connected

Twisted boundary conditions: Drawbacks

Drawbacks:

- Box: Rotation invariance \rightarrow cubic invariance
- Twisting: reduces symmetry further

Consequences:

- $m^{2}\left(\vec{p}^{2}\right)=E^{2}-\vec{p}^{2}$ is not constant
- There are typically more form-factors
- In general: quantities depend on more (all) components of the momenta
- Charge conjugation involves a change in momentum

Two-point function: twisted boundary conditions

JB, Relefors, JHEP 05 (201)4 015 [arXiv:1402.1385]

- $\int_{V} \frac{d^{d} k}{(2 \pi)^{d}} \frac{k_{\mu}}{k^{2}-m^{2}} \neq 0$
- $\left\langle\bar{u} \gamma^{\mu} u\right\rangle \neq 0$
- $j_{\pi^{+}}^{\mu}=\bar{d} \gamma^{\mu} u$
satisfies $\partial_{\mu}\left\langle T\left(j_{\pi^{+}}^{\mu}(x) j_{\pi^{+}}^{j \dagger}(0)\right)\right\rangle=\delta^{(4)}(x)\left\langle\bar{d} \gamma^{\nu} d-\bar{u} \gamma^{\nu} u\right\rangle$
- $\Pi_{a}^{\mu \nu}(q) \equiv i \int d^{4} x e^{i q \cdot x}\left\langle T\left(j_{a}^{\mu}(x) j_{a}^{\nu \dagger}(0)\right)\right\rangle$

Satisfies WT identity. $q_{\mu} \Pi_{\pi^{+}}^{\mu \nu}=\left\langle\bar{u} \gamma^{\mu} u-\bar{d} \gamma^{\mu} d\right\rangle$

- ChPT at one-loop satisfies this see also Aubin et al, Phys.Rev. D88 (2013) 7, 074505 [arXiv:1307.4701]
- two-loop in partially quenched: JB, Relefors, in preparation satisfies the WT identity (as it should)

LUND
UNIVERSITY
ChPT at FV and/or
twisting
Johan Bijnens

Introduction
FV: masses
and decay
A mesonic ChPT
program
framework
Two-point
(Dis)connected
Twisting
Results
$K_{\ell 3}$ etc
Conclusions

$\left\langle\bar{u} \gamma^{\mu} u\right\rangle$

Fully twisted

Partially twisted
$\theta_{u}=\left(0, \theta_{u}, 0,0\right)$, all others untwisted $m_{\pi} L=4$
For comparison: $\begin{aligned} & \langle\bar{u} u\rangle^{V} \approx-2.4 \quad 10^{-5} \mathrm{GeV}^{3} \\ & \langle\bar{u} u\rangle \approx-1.2 \quad 10^{-2} \mathrm{GeV}^{3}\end{aligned}$

LUND
UNIVERSITY

ChPT at FV and/or
twisting
Johan Bijnens

Introduction
FV: masses
and decay
A mesonic
ChPT
program
framework
Two-point
(Dis)connected
Twisting
Results
$K_{\ell 3}$ etc
Conclusions

Two-point: partially twisted, one-loop

$q=\left(0, \sqrt{-q^{2}}, 0,0\right)$
$\Pi^{22}=\Pi^{33}$
$\overrightarrow{\theta_{u}}=L q$
$m_{\pi 0} L=4$
$m_{\pi 0}=0.135 \mathrm{GeV}$
$-q^{2} \Pi_{\mathrm{VMD}}^{(1)}=\frac{-4 q^{2} F_{\pi}^{2}}{M_{V}^{2}-q^{2}}$

$$
\approx 5 e-3 \cdot \frac{q^{2}}{0.1}
$$

diamond: periodic
Note: $\Pi^{\mu \nu}(0) \neq 0$

LUND
UNIVERSITY
ChPT at FV and/or twisting

Johan Bijnens

Introduction
FV: masses and decay

A mesonic
ChPT
program
framework
Two-point
(Dis)connected
Twisting
Results
$K_{\ell 3}$ etc
Conclusions

Correction is at the \% level

Two-point: partially twisted, with two-loop

$$
\begin{aligned}
& q=\left(0, \sqrt{-q^{2}}, 0,0\right) \\
& \Pi^{22}=\Pi^{33} \\
& \vec{\theta}_{u}=L q \\
& m_{\pi 0} L=4 \\
& m_{\pi 0}=0.135 \mathrm{GeV} \\
& -q^{2} \Pi_{\mathrm{VMD}}^{(1)}=\frac{-4 q^{2} F_{\pi}^{2}}{M_{V}^{2}-q^{2}} \\
& \quad \approx 5 \mathrm{e}-3 \cdot \frac{q^{2}}{0.1}
\end{aligned}
$$

UNIVERSITY
ChPT at FV and/or twisting

Johan Bijnens

Introduction
FV: masses and decay

A mesonic
ChPT
program
framework
Two-point
(Dis)connected
Twisting
Results
$K_{\ell 3}$ etc
Conclusions

Correction from two loop is reasonable (thin lines are p^{4})

Two-point: partially twisted, one-loop

Correction is at the \% level

LUND
UNIVERSITY
ChPT at FV
and/or
twisting
Johan Bijnens

Introduction
FV: masses
and decay
A mesonic
ChPT
program
framework
Two-point
(Dis)connected
Twisting
Results
$K_{\ell 3}$ etc
Conclusions

Two-point: partially twisted, one-loop

LUND
UNIVERSITY
ChPT at FV and/or twisting

Johan Bijnens

Introduction
FV: masses
and decay
A mesonic
ChPT
program
framework
Two-point
(Dis)connected
Twisting
Results
$K_{\ell 3}$ etc

$K_{\ell 3}$: Twisting and finite volume

LUND
UNIVERSITY

ChPT at FV and/or
twisting

- There are more form-factors since Lorentz-invariance and even cubic symmetry is broken
- Masses become twist and volume dependent
- All these need to be remembered in the Ward identities
- Masses needed when checking Ward identities
- For unquenched twisted masses, decay constants and electromagnetic form-factor (see there for earlier work): JB, Relefors, JHEP 05 (2014) 015 [arXiv:1402.1385]
- Partial twisting and quenching, staggered: masses and $K_{\ell 3}$ Bernard, JB, Gamiz, Relefors, in preparation

Johan Bijnens

Introduction
FV: masses
and decay
A mesonic

Partial twisting: masses

Bernard, JB, Gamiz, Relefors, in preparation

$$
m_{\pi} L=3, \vec{\theta}_{u}=(\theta, 0,0), \vec{\theta}_{d}=\vec{\theta}_{s}=\vec{\theta}_{d \mathrm{sea}}=\vec{\theta}_{s \mathrm{sea}}=0
$$

$$
\vec{\theta}_{\text {usea }}=0
$$

$$
\vec{\theta}_{\text {usea }}=(\pi / 3,0,0)
$$

$$
\vec{p}_{1}=(\theta, 0,0) / L, \vec{p}_{2}=(\theta+2 \pi, 0,0) / L, \vec{p}_{3}=(\theta-2 \pi, 0,0) / L,
$$

ChPT at FV and/or
twisting
Johan Bijnens

Introduction
FV: masses and decay

A mesonic
ChPT
program
framework
Two-point
$K_{\ell 3}$ etc

Extra

Results:
twist+PQ
Results:
staggered
Conclusions

LUND
UNIVERSITY

ChPT at FV and/or
twisting
Johan Bijnens

Introduction
FV: masses
and decay
A mesonic
ChPT
program
framework
Two-point
$K_{\ell 3}$ etc

Extra

Results:
twist+PQ
Results:
staggered

- Rare decays: p^{4} Mescia, Smith 2007, p^{6} JB, Ghorbani, 2007
- Split in f_{+}, f_{-}and h_{μ} not unique
- Masses: finite volume masses with twist effect included.
- $p=\left(\sqrt{m_{K}^{2}(\vec{p})+\vec{p}^{2}}, \vec{p}\right)$
- $p^{\prime}=\left(\sqrt{m_{\pi}^{2}\left(\vec{p}^{\prime}\right)+\vec{p}^{\prime 2}}, \vec{p}^{\prime}\right)$
- q^{2} calculated with m_{K}^{2} and m_{π}^{2} at $V=\infty$ will also have volume corrections (small effect)
- First: Twisting and partially quenched
- Second: Staggered as well

$K_{\ell 3}$: infinite volume

- The components are the well defined ones at finite volume
- plots: p^{4} (neglecting the $L_{9}^{r} q^{2}$ term)
- Valence masses with $m_{\pi}=135 \mathrm{GeV}$ and $m_{K}=0.495 \mathrm{GeV}$
- $P Q$ case with $\hat{m}_{\text {sea }}=1.1 \hat{m}, m_{\text {ssea }}=1.1 m_{s}$.
- case $A: \vec{p}=0, \quad$ case $B: \vec{p}^{\prime}=0$
$\underset{\text { UNIVRRSITY }}{\text { LUN }}$
UNIVERSITY
ChPT at FV
and/or
twisting
Johan Bijnens

Introduction
FV: masses
and decay
A mesonic
ChPT
program
framework
Two-point
$K_{\text {l3 }}$ etc

Extra

Results:
twist+PQ
Results:
staggered

ρ

$$
\mu=0
$$

LUND

UNIVERSITY

ChPT at FV and/or
twisting
Johan Bijnens

Introduction
FV: masses
and decay
A mesonic
ChPT
program
framework
Two-point
$K_{\ell 3}$ etc
Extra
Results:
twist+PQ
Results:
staggered
Conclusions

$$
\begin{aligned}
& \rho_{\infty} \approx 0.23 \mathrm{GeV}^{2} \\
& m_{\pi} L=3
\end{aligned}
$$

UNIVERSITY

ChPT at FV and/or twisting

Johan Bijnens

Introduction
FV: masses and decay

A mesonic
ChPT
program
framework
Two-point
$K_{\ell 3}$ etc
Extra
Results:
twist+PQ
Results:
staggered
Calculate the volume corrections for exactly what you did

What do you calculate on the lattice?

LUND
UNIVERSITY
ChPT at FV and/or
twisting
Johan Bijnens

- Want $f_{+}(0)$ at infinite volume and physical masses
- WT identity: $\left(p^{2}-p^{\prime 2}\right) f_{+}+q^{2} f_{-}+q_{\mu} h^{\mu}=\rho$
- Assume calculation at physical masses
- All parts in the WTI at fixed $\vec{p}, \vec{p}^{\prime}$ have finite volume corrections: $p^{2}, p^{\prime 2}, q^{2}, f_{-}, q^{\mu} h_{\mu}$ and ρ
- Can use WTI at finite volume and then extrapolate f_{+}or extrapolate ρ and then use WTI

Introduction
FV: masses and decay

A mesonic
ChPT
program
framework
Two-point

MILC lattices and numbers Preliminary

ChPT at FV and/or
twisting

$\mathrm{a}(\mathrm{fm})$	m_{l} / m_{s}	$\mathrm{~L}(\mathrm{fm})$	$m_{\pi}(\mathrm{MeV})$	$m_{K}(\mathrm{MeV})$	$m_{\pi} L$
0.15	0.035	4.8	134	505	3.25
0.12	0.2	2.9	309	539	4.5
	0.1	2.9	220	516	3.2
	0.1	3.8	220	516	4.3
	0.1	4.8	220	516	5.4
	0.035	5.7	135	504	3.9
0.09	0.2	2.9	312	539	4.5
	0.1	4.2	222	523	4.7
	0.035	5.6	129	495	3.7
0.06	0.2	2.8	319	547	4.5
	0.035	5.5	134	491	3.7

Johan Bijnens

Introduction
FV: masses
and decay
A mesonic

Results: $\vec{\theta}_{u}=(0, \theta, \theta, \theta)$ (staggered)

Finite volume part of WI divided by $m_{K}^{2}-m_{\pi}^{2}$:

$\frac{{ }^{V} m_{K}^{2}-\Delta^{V} m_{\pi}^{2}}{m_{K}^{2}-m_{\pi}^{2}}$			$\frac{q_{\mu} h^{\mu}}{\eta_{K}^{2}-m_{\pi}^{2}}=\frac{\Delta^{\vee} \rho}{m_{K}^{2}-m_{\pi}^{2}}$		
m_{π}	$m_{\pi} L$	"mass"	" f_{+}"	" $h_{\mu}{ }^{\prime \prime}$	" ρ "
134	3.25	0.00000	-0.00042	0.00007	-0.00036
309	4.5	0.00013	-0.00003	-0.00041	-0.00031
220	3.2	0.00054	-0.00048	-0.00084	-0.00077
220	4.3	-0.00007	-0.00009	-0.00005	-0.00021
220	5.4	-0.00005	-0.00003	0.00001	-0.00006
135	3.9	-0.00006	-0.00020	0.00005	-0.00021
312	4.5	0.00047	0.00023	-0.00068	-0.00001
222	4.7	-0.00000	0.00018	-0.00003	0.00014
129	3.7	-0.00013	-0.00004	0.00009	-0.00007
319	4.5	0.00052	0.00037	-0.00081	0.00008
134	3.7	-0.00016	0.00045	0.00013	0.00043

ChPT at FV and/or twisting

Johan Bijnens

Results: $\vec{\theta}_{u}=(0, \theta, 0,0)$ (staggered)

Finite volume part of WI divided by $m_{K}^{2}-m_{\pi}^{2}$:

$\frac{{ }^{V} m_{K}^{2}-\Delta^{V} m_{\pi}^{2}}{m_{K}^{2}-m_{\pi}^{2}}$			$\frac{q_{\mu} h^{\mu}}{\eta_{K}^{2}-m_{\pi}^{2}}=\frac{\Delta^{\vee} \rho}{m_{K}^{2}-m_{\pi}^{2}}$		
m_{π}	$m_{\pi} L$	"mass"	" f_{+}"	" $h_{\mu}{ }^{\text {" }}$	" ρ "
134	3.25	-0.00003	-0.00066	0.00008	-0.00061
309	4.5	-0.00030	-0.00017	-0.00002	-0.00049
220	3.2	-0.00078	-0.00105	0.00036	-0.00148
220	4.3	-0.00033	-0.00034	0.00018	-0.00049
220	5.4	-0.00008	-0.00010	0.00003	-0.00015
135	3.9	-0.00002	-0.00032	0.00001	-0.00033
312	4.5	-0.00019	0.00002	-0.00009	-0.00026
222	4.7	-0.00024	-0.00018	0.00017	-0.00025
129	3.7	-0.00003	-0.00050	-0.00001	-0.00054
319	4.5	-0.00026	0.00013	-0.00012	-0.00025
134	3.7	-0.00005	-0.00058	0.00001	-0.00062

ChPT at FV and/or twisting

Johan Bijnens

Introduction
FV: masses
and decay
A mesonic
ChPT
program
framework
Two-point

Extra

Results:
Results:
staggered

Results: $\vec{\theta}_{u}=(0, \theta, 0,0)$ (not staggered)

Finite volume part of WI divided by $m_{K}^{2}-m_{\pi}^{2}$:

$\frac{{ }^{V} m_{K}^{2}-\Delta^{V} m_{\pi}^{2}}{m_{K}^{2}-m_{\pi}^{2}}$			$\frac{q_{\mu} h^{\mu}}{\rho_{K}^{2}-m_{\pi}^{2}}=\frac{\Delta^{\vee} \rho}{m_{K}^{2}-m_{\pi}^{2}}$		
m_{π}	$m_{\pi} L$	"mass"	" f_{+}"	" h_{μ} "	" ρ "
134	3.25	-0.00049	-0.00124	0.00037	-0.00137
309	4.5	-0.00033	0.00014	-0.00004	0.00022
220	3.2	-0.00113	0.00077	0.00067	0.00031
220	4.3	-0.00062	-0.00011	0.00046	-0.00027
220	5.4	-0.00014	-0.00011	0.00010	-0.00016
135	3.9	0.00004	-0.00045	-0.00008	-0.00049
312	4.5	0.00031	0.00015	-0.00009	-0.00025
222	4.7	-0.00037	-0.00015	0.00027	-0.00025
129	3.7	-0.00000	-0.00066	-0.00005	-0.00071
319	4.5	-0.00031	0.00015	-0.00011	-0.00027
134	3.7	-0.00007	-0.00064	0.00001	-0.00070

ChPT at FV and/or twisting

Johan Bijnens Introduction FV: masses and decay

A mesonic
ChPT
program
framework

Two-point

Extra

Results:
Results:
staggered
Conclusions

Conclusions

LUND

UNIVERSITY
ChPT at FV
and/or
twisting
Johan Bijnens

Introduction
FV: masses
and decay
A mesonic
ChPT
program
framework
Two-point
$K_{\ell 3}$ etc
Conclusions

- Be careful: ChPT must exactly correspond to your lattice calculation
- Programs available (for published ones) via CHIRON Those for this talk: sometime later this year

