

ChPT at FV and/or twisting

Johan Bijnens

Introduction

FV: masses and decay

A mesonic ChPT program framework

Two-point

 $K_{\ell 3}$ etc

Conclusions

CHIRAL PERTURBATION AT FINITE VOLUME AND/OR WITH TWISTED BOUNDARY CONDITIONS

Johan Bijnens

Lund University

Vetenskapsrådet

bijnens@thep.lu.se
http://thep.lu.se/~bijnens
http://thep.lu.se/~bijnens/chpt/
http://thep.lu.se/~bijnens/chiron/

Lattice 2016 — Southampton 29 July 2016

Overview

Introduction

- 2 Finite volume: masses, decay constants at two-loops
- 3 A mesonic ChPT program framework
- 4 Two-point functions
 - Connected and disconnected in infinite volume
 - Twisting
 - Results

5 Masses, K_{ell3},...: twisted and staggered at one-loop

- Extra form-factors and Ward identities
- Results: twist+PQ
- Results: staggered

ChPT at FV and/or twisting

Johan Bijnens

Introduction

FV: masses and decay

A mesonic ChPT program framework

Two-point

 $K_{\ell 3}$ etc

- ChPT = Effective field theory describing the lowest order pseudo-scalar representation
- or the (pseudo) Goldstone bosons from spontaneous breaking of chiral symmetry.
- The number of degrees of freedom depend on the case we look at
- Recent review of LECs:

JB, Ecker, Ann. Rev. Nucl. Part. Sci. 64 (2014) 149 [arXiv:1405.6488]

ChPT at FV and/or twisting

Johan Bijnens

Introduction

FV: masses and decay

A mesonic ChPT program framework

Two-point

 $K_{\ell 3}$ etc

Finite volume

- Lattice QCD calculates at different quark masses, volumes boundary conditions, . . .
- A general result by Lüscher: relate finite volume effects to scattering (1986)
- Chiral Perturbation Theory is also useful for this
- Start: Gasser and Leutwyler, Phys. Lett. B184 (1987) 83, Nucl. Phys. B 307 (1988) 763 $M_{\pi}, F_{\pi}, \langle \bar{q}q \rangle$ one-loop equal mass case
- I will stay with ChPT and the p regime $(M_{\pi}L >> 1)$
- $1/m_{\pi} = 1.4$ fm may need to (and I will) go beyond leading $e^{-m_{\pi}L}$ terms "around the world as often as you like"
- Convergence of ChPT is given by $1/m_
 hopprox$ 0.25 fm

ChPT at FV and/or

twisting

Johan Bijnens

Introduction

FV: masses and decay

A mesonic ChPT program framework

Two-point

 $K_{\ell 3}$ etc

Finite volume: selection of earlier ChPT results

- masses and decay constants for π , K, η one-loop Becirevic, Villadoro, Phys. Rev. D 69 (2004) 054010
- M_{π} at 2-loops (2-flavour)

Colangelo, Haefeli, Nucl.Phys. B744 (2006) 14 [hep-lat/0602017]

- \$\langle \bar{q}q \rangle\$ at 2 loops (3-flavour)
 JB, Ghorbani, Phys. Lett. B636 (2006) 51 [hep-lat/0602019]
- Twisted mass at one-loop Colangelo, Wenger, Wu, Phys.Rev. D82 (2010) 034502 [arXiv:1003.0847]
- Twisted boundary conditions

Sachrajda, Villadoro, Phys. Lett. B 609 (2005) 73 [hep-lat/0411033]

ChPT at FV and/or twisting

Johan Bijnens

Introduction

FV: masses and decay

A mesonic ChPT program framework

Two-point

 $K_{\ell 3}$ etc

Papers

ChPT at FV and/or twisting

Johan Bijnens

Introduction

FV: masses and decay

A mesonic ChPT program framework

Two-point

 $K_{\ell 3}$ etc

Conclusions

- Finite volume at two-loops (periodic)
 - Two-loop sunset integrals at finite volume,
 - JB, Boström, Lähde, JHEP 1401(2014)019 [arXiv:1311.3531]
 - Finite Volume at two-loops in Chiral Perturbation Theory, JB, Rössler, JHEP 1501 (2015) 034 [arXiv:1411.6384]
 - Finite Volume for Three-Flavour Partially Quenched Chiral Perturbation Theory through NNLO in the Meson Sector, JB, Rössler, JHEP 1511 (2015) 097 [arXiv:1508.07238]
 - Finite Volume and Partially Quenched QCD-like Effective Field Theories, JB, Rössler, JHEP 1511 (2015) 017 [arXiv:1509.04082]
- Twisted boundary conditions
 - Masses, Decay Constants and Electromagnetic Form-factors with Twisted Boundary Conditions,

JB, Relefors, JHEP 1405 (2014) 015 [arXiv:1402.1385]

- The vector two-point function with twisted boundary conditions, JB. Relefors, to be published
- K_{ℓ3} wth staggered, finite volume and twisting, Bernard, JB, Gamiz, Relefors, to be published

Masses at two-loop order

- Sunset integrals at finite volume done
 JB, Boström and Lähde, JHEP 01 (2014) 019 [arXiv:1311.3531]
- Loop calculations:

JB, Rössler, JHEP 1501 (2015) 034 [arXiv:1411.6384]

- Agreement for $N_f = 2, 3$ for pion
- K has no pion loop at LO

ChPT at FV and/or twisting

Johan Bijnens

Introduction

FV: masses and decay

A mesonic ChPT program framework

.....

 $K_{\ell 3}$ etc

Decay constants at two-loop order

- Sunset integrals at finite volume done JB, Boström and Lähde, JHEP 01 (2014) 019 [arXiv:1311.3531]
- Loop calculations:

JB, Rössler, JHEP 1501 (2015) 034 [arXiv:1411.6384]

- Agreement for $N_f = 2, 3$ for pion
- K now has a pion loop at LO

ChPT at FV and/or twisting

Johan Bijnens

Introduction

FV: masses and decay

A mesonic ChPT program framework

Two-point

 $K_{\ell 3}$ etc

Other p^6

ChPT at FV and/or twisting

Johan Bijnens

Introduction

FV: masses and decay

A mesonic ChPT program framework

Two-point

 $K_{\ell 3}$ etc

Conclusions

Masses and decay constants at finite volume:

- Finite volume for PQ three flavour (all cases) JB, Rössler, JHEP 1511 (2015) 097, [arXiv:1508.07238]
- QCD-like theories, normal and PQ (one valence mass, one sea mass) JB, Rössler, JHEP 1511 (2015) 017, [arXiv:1509.04082]
 - $SU(N) \times SU(N)/SU(N)$
 - SU(N)/SO(N) (including Majorana case)
 - *SU*(2*N*)/*Sp*(2*N*)
- If you want more graphs: look at the papers or play with the programs in CHIRON

Program availability

ChPT at FV and/or twisting

Johan Bijnens

Introduction

FV: masses and decay

A mesonic ChPT program framework

Two-point

 $K_{\ell 3}$ etc

Conclusions

Making the programs more accessible for others to use:

- Two-loop results have very long expressions
- Many not published but available from http://www.thep.lu.se/~bijnens/chpt/
- Many programs available on request from the authors
- Idea: make a more general framework
- CHIRON:

JB,

"CHIRON: a package for ChPT numerical results at two loops,"

Eur. Phys. J. C **75** (2015) 27 [arXiv:1412.0887] http://www.thep.lu.se/~bijnens/chiron/

Program availability: CHIRON

- Present version: 0.54
- Classes to deal with L_i, C_i, L_i⁽ⁿ⁾, K_i, standardized in/output, changing the scale,...
- Loop integrals: one-loop and sunsetintegrals
- Included so far (at two-loop order):
 - ullet Masses, decay constants and $\langle \bar q q \rangle$ for the three flavour case
 - Masses and decay constants at finite volume in the three flavour case
 - Masses and decay constants in the partially quenched case for three sea quarks
 - Masses and decay constants in the partially quenched case for three sea quarks at finite volume
- A large number of example programs is included
- Manual has already reached 94 pages
- I am continually adding results from my earlier work (remainder of this talk is being worked on)

ChPT at FV and/or twisting

Johan Bijnens

Introduction

FV: masses and decay

A mesonic ChPT program framework

Two-point

 $K_{\ell 3}$ etc

Two-point: Why

- Include also singlet part of the vector current
- There are new terms in the Lagrangian
- p^4 only one more: $\langle L_{\mu\nu} \rangle \langle L^{\mu\nu} \rangle + \langle R_{\mu\nu} \rangle \langle R^{\mu\nu} \rangle$
- \implies The pure singlet vector current does not couple to mesons until p^6
- \implies Loop diagrams involving the pure singlet vector current only appear at p^8 (implies relations)
- p^{6} (no full classification, just some examples) $\langle D_{\rho}L_{\mu\nu}\rangle \langle D^{\rho}L^{\mu\nu}\rangle + \langle D_{\rho}R_{\mu\nu}\rangle \langle D^{\rho}R^{\mu\nu}\rangle, \langle L_{\mu\nu}\rangle \langle L^{\mu\nu}\chi^{\dagger}U\rangle + \langle R_{\mu\nu}\rangle \langle R^{\mu\nu}\chi U^{\dagger}\rangle, \dots$
- Results at two-loop order, unquenched isospin limit

ChPT at FV and/or twisting

Johan Bijnens

Introduction

FV: masses and decay

A mesonic ChPT program framework

Two-point

(Dis)connected Twisting Results

 $K_{\ell 3}$ etc

- $\Pi^{\mu\nu}_{ud}$: only disconnected
- $\Pi^{\mu\nu}_{uu} = \Pi^{\mu\nu}_{\pi^+\pi^+} + \Pi^{\mu\nu}_{ud}$

•
$$\Pi_{ee}^{\mu\nu} = \frac{5}{9}\Pi_{\pi^+\pi^+}^{\mu\nu} + \frac{1}{9}\Pi_{\mu\mu}^{\mu\nu}$$

- Infinite volume (and the *ab* considered here): $\Pi^{\mu\nu}_{ab} = (q^{\mu}q^{\nu} - q^{2}g^{\mu\nu}) \Pi^{(1)}_{ab}$
- Large N_c + VMD estimate: $\Pi_{\pi^+\pi^+}^{(1)} = \frac{4F_\pi^2}{M_V^2 q^2}$
- Plots on next pages are for $\Pi^{(1)}_{ab0}(q^2) = \Pi^{(1)}_{ab}(q^2) \Pi^{(1)}_{ab}(0)$
- At p⁴ the extra LEC cancels, at p⁶ there are new LEC contributions, but no new ones in the loop parts

ChPT at FV and/or twisting

Johan Bijnens

Introduction

FV: masses and decay

A mesonic ChPT program framework

Two-point

(Dis)connected Twisting Results

 $K_{\ell 3}$ etc

Lund UNIVERSITY

17/41

Two-point: Including strange

Two-point: with strange, electromagnetic current

Twisted boundary conditions

- On a lattice at finite volume $p^i = 2\pi n^i/L$: very few momenta directly accessible
- Put a constraint on certain quark fields in some directions: $q(x^i + L) = e^{i\theta_q^i}q(x^i)$
- Then momenta are $p^i = \theta^i/L + 2\pi n^i/L$. Allows to map out momentum space on the lattice much better Bedaque,...
- Small note:
 - Beware what people call momentum: is θ^i/L included or not?
 - Reason: a colour singlet gauge transformation
 - $G^{S}_{\mu} \to G^{S}_{\mu} \partial_{\mu}\epsilon(x), \ q(x) \to e^{i\epsilon(x)}q(x), \ \epsilon(x) = -\theta^{i}_{q}x^{i}/L$
 - Boundary condition Twisted ⇔ constant background field+periodic

ChPT at FV and/or twisting

Johan Bijnens

ntroduction

FV: masses and decay

A mesonic ChPT program framework

Two-point (Dis)connected Twisting Results

 $K_{\ell 3}$ etc

Twisted boundary conditions: Drawbacks

Drawbacks:

- $\bullet~\mbox{Box:}~\mbox{Rotation}$ invariance $\rightarrow~\mbox{cubic}$ invariance
- Twisting: reduces symmetry further

Consequences:

- $m^2(ec{p}^2)=E^2-ec{p}^2$ is not constant
- There are typically more form-factors
- In general: quantities depend on more (all) components of the momenta
- Charge conjugation involves a change in momentum

ChPT at FV and/or twisting

Johan Bijnens

Introduction

FV: masses and decay

A mesonic ChPT program framework

Two-point (Dis)connected Twisting Results

 $K_{\ell 3}$ etc

Two-point function: twisted boundary conditions

JB, Relefors, JHEP 05 (201)4 015 [arXiv:1402.1385]

•
$$\int_V \frac{d^d k}{(2\pi)^d} \frac{k_\mu}{k^2 - m^2} \neq 0$$

- $\langle \bar{u} \gamma^{\mu} u \rangle \neq 0$
- $j^{\mu}_{\pi^+} = \bar{d}\gamma^{\mu}u$ satisfies $\partial_{\mu} \langle T(j^{\mu}_{\pi^+}(x)j^{\nu\dagger}_{\pi^+}(0)) \rangle = \delta^{(4)}(x) \langle \bar{d}\gamma^{\nu}d - \bar{u}\gamma^{\nu}u \rangle$ • $\Pi^{\mu\nu}_{a}(q) \equiv i \int d^4x e^{iq \cdot x} \langle T(j^{\mu}_{a}(x)j^{\nu\dagger}_{a}(0)) \rangle$ Satisfies WT identity. $q_{\mu}\Pi^{\mu\nu}_{\pi^+} = \langle \bar{u}\gamma^{\mu}u - \bar{d}\gamma^{\mu}d \rangle$
- ChPT at one-loop satisfies this see also Aubin et al, Phys.Rev. D88 (2013) 7, 074505 [arXiv:1307.4701]
- two-loop in partially quenched: JB, Relefors, in preparation satisfies the WT identity (as it should)

ChPT at FV and/or twisting

Johan Bijnens

Introduction

FV: masses and decay

A mesonic ChPT program framework

Two-point (Dis)connected Twisting Results

 $K_{\ell 3}$ etc Conclusions $\langle \bar{u} \gamma^{\mu} u \rangle$

Fully twistedPartially twisted $\theta_u = (0, \theta_u, 0, 0)$, all others untwisted $m_{\pi}L = 4$ (ratio at $p^4=2$ up to kaon loops)For comparison: $\langle \bar{u}u \rangle^V \approx -2.4 \ 10^{-5} \ \text{GeV}^3$ $\langle \bar{u}u \rangle \approx -1.2 \ 10^{-2} \ \text{GeV}^3$

ChPT at FV and/or twisting

Johan Bijnens

Introduction

FV: masses and decay

A mesonic ChPT program framework

Two-point (Dis)connected Twisting Results

K_{l3} etc

Two-point: partially twisted, one-loop

$$q=\left(0,\sqrt{-q^2},0,0\right)$$

$$\Pi^{22} = \Pi^{33}$$

 $\vec{ heta}_u = L q$
 $m_{\pi 0} L = 4$
 $m_{\pi 0} = 0.135 \; {
m GeV}$

$$-q^2 \Pi_{
m VMD}^{(1)} = rac{-4q^2 F_{\pi}^2}{M_V^2 - q^2} pprox 5 {
m e} {
m -} 3 {
m \cdot} rac{q^2}{0.1}$$

diamond: periodic Note: $\Pi^{\mu\nu}(0) \neq 0$

ChPT at FV and/or twisting

Johan Bijnens

Introduction

FV: masses and decay

A mesonic ChPT program framework

Two-point (Dis)connected Twisting Results

 $K_{\ell 3}$ etc

Correction is at the % level

Two-point: partially twisted, with two-loop

$$q=\left(0,\sqrt{-q^2},0,0\right)$$

$$\Pi^{22} = \Pi^{33}$$

 $\vec{ heta}_u = L q$
 $m_{\pi 0} L = 4$
 $m_{\pi 0} = 0.135 \; {
m GeV}$

$$-q^2 \Pi_{
m VMD}^{(1)} = rac{-4q^2 F_{\pi}^2}{M_V^2 - q^2} \ pprox 5 {
m e} {
m -} 3 {
m \cdot} rac{q^2}{0.1}$$

diamond: periodic Note: $\Pi^{\mu\nu}(0) \neq 0$

ChPT at FV and/or twisting

Johan Bijnens

Introduction

FV: masses and decay

A mesonic ChPT program framework

Two-point (Dis)connected Twisting Results

 $K_{\ell 3}$ etc

Correction from two loop is reasonable (thin lines are p^4)

Two-point: partially twisted, one-loop

Correction is at the % level

Two-point: partially twisted, one-loop

Two loop correction again reasonable (thin lines are p^4)

$K_{\ell 3}$: Twisting and finite volume

- There are more form-factors since Lorentz-invariance and even cubic symmetry is broken
- Masses become twist and volume dependent
- All these need to be remembered in the Ward identities
- Masses needed when checking Ward identities
- For unquenched twisted masses, decay constants and electromagnetic form-factor (see there for earlier work): JB, Relefors, JHEP 05 (2014) 015 [arXiv:1402.1385]
- Partial twisting and quenching, staggered: masses and $K_{\ell 3}$ Bernard, JB, Gamiz, Relefors, in preparation

ChPT at FV and/or twisting

Johan Bijnens

Introduction

FV: masses and decay

A mesonic ChPT program framework

Two-point

$K_{\ell 3}$ etc

Extra

Results: twist+PQ Results: staggered

Partial twisting: masses

30/41

- $\langle \pi^{-}(p')|(m_s-m_u)\bar{s}u(0)|K^{0}(p)\rangle = \rho$.
- Ward identity: $(p^2 p'^2)f_+ + q^2f_- + q^{\mu}h_{\mu} = \rho$
- ChPT:
 - p^4 Isopin conserving and breaking Gasser, Leutwyler, 1985
 - p⁶ Isospin conserving JB, Talavera, 2003
 - p⁶ Isospin breaking JB, Ghorbani, 2007
 - p^4 partially quenched, staggered Bernard, JB, Gamiz, 2013
 - p^4 Finite volume Ghorbani, Ghorbani, 2013 ($q^2=0$)
 - *p*⁴ Finite volume, twisted, partially quenched, staggered Bernard, JB, Gamiz, Relefors, in preparation
 - Rare decays: p^4 Mescia, Smith 2007, p^6 JB, Ghorbani, 2007

• Split in f_+ , f_- and h_μ not unique

ChPT at FV and/or twisting

Johan Bijnens

Introduction

FV: masses and decay

A mesonic ChPT program framework

Two-point

$K_{\ell 3}$ etc

Extra

Results: twist+PQ Results: staggered

ChPT at FV and/or twisting

Johan Bijnens

Introduction

FV: masses and decay

A mesonic ChPT program framework

Two-point

 $K_{\ell 3}$ etc

Extra

Results: twist+PQ Results: staggered

Conclusions

• Masses: finite volume masses with twist effect included. • $p = (\sqrt{m_{e}^2(\vec{p}) + \vec{p}^2}, \vec{p})$

•
$$p' = \left(\sqrt{m_{\pi}^2(\vec{p}') + \vec{p}'^2}, \vec{p}'\right)$$

- q^2 calculated with m_K^2 and m_π^2 at $V = \infty$ will also have volume corrections (small effect)
- First: Twisting and partially quenched
- Second: Staggered as well

$K_{\ell 3}$: infinite volume

The components are the well defined ones at finite volume

- plots: p^4 (neglecting the $L_9^r q^2$ term)
- Valence masses with $m_{\pi}=135~{
 m GeV}$ and $m_{K}=0.495~{
 m GeV}$
- PQ case with $\hat{m}_{sea} = 1.1 \hat{m}$, $m_{ssea} = 1.1 m_s$.
- case A: $\vec{p} = 0$, case B: $\vec{p}' = 0$

ChPT at FV and/or twisting

Johan Bijnens

Introduction

FV: masses and decay

A mesonic ChPT program framework

Two-point

 $K_{\ell 3}$ etc

Extra

Results: twist+PQ

Results: staggered

 $K_{\ell 3}$

and/or twisting Johan Bijnens

ChPT at FV

Introduction

FV: masses and decay

A mesonic ChPT program framework

Two-point

 $K_{\ell 3}$ etc

Results: twist+PQ

Results: staggered

Conclusions

 $ho_{\infty} pprox 0.23 \,\, {
m GeV^2} \ m_{\pi} L = 3$

 $K_{\ell 3}$

ChPT at FV and/or twisting

Johan Bijnens

Introduction

FV: masses and decay

A mesonic ChPT program framework

Two-point

 $K_{\ell 3}$ etc

Extra

Results: twist+PQ

Results: staggered

Conclusions

Calculate the volume corrections for exactly what you did

What do you calculate on the lattice?

- Want $f_+(0)$ at infinite volume and physical masses
- WT identity: $(p^2 p'^2)f_+ + q^2f_- + q_\mu h^\mu = \rho$
- Assume calculation at physical masses
- All parts in the WTI at fixed p, p' have finite volume corrections: p², p'², q², f₋, q^μh_μ and ρ
- Can use WTI at finite volume and then extrapolate f_+ or extrapolate ρ and then use WTI

ChPT at FV and/or twisting

Johan Bijnens

Introduction

EV: masses and decay

A mesonic ChPT program framework

Two-point

 $\zeta_{\ell 3}$ etc

Extra Results: twist+PQ Results:

staggered

MILC lattices and numbers Preliminary

a(fm)	m_l/m_s	L(fm)	$m_{\pi}({ m MeV})$	$m_K(MeV)$	$m_{\pi}L$
0.15	0.035	4.8	134	505	3.25
0.12	0.2	2.9	309	539	4.5
	0.1	2.9	220	516	3.2
	0.1	3.8	220	516	4.3
	0.1	4.8	220	516	5.4
	0.035	5.7	135	504	3.9
0.09	0.2	2.9	312	539	4.5
	0.1	4.2	222	523	4.7
	0.035	5.6	129	495	3.7
0.06	0.2	2.8	319	547	4.5
	0.035	5.5	134	491	3.7

ChPT at FV and/or twisting

Johan Bijnens

Introduction

FV: masses and decay

A mesonic ChPT program framework

Two-point

K_{ℓ3} etc Extra Results: twist+PQ Results: staggered

Results: $\vec{\theta}_u = (0, \theta, \theta, \theta)$ (staggered)

Finite volume part of WI divided by $m_K^2 - m_\pi^2$:						ChPT at FV and/or
$\Delta^V m_K^2 - \Delta^V m_{\pi^+}^2 + \Delta^V f_{(0)} + q_\mu h^\mu - \Delta^V \rho$						
m	$m_{K}^{2} - m_{\pi}^{2}$		$(0) + \frac{1}{m_K^2}$	$-\overline{m_{\pi}^2} = \overline{m_K^2}$	$-m_{\pi}^{2}$	Jonan Bijnens
m_{π}	$m_{\pi}L$	"mass"	"f ₊ "	" h_{μ} "	" $ ho$ "	Introduction
134	3.25	0.00000	-0.00042	0.00007	-0.00036	FV: masses and decay
309	4.5	0.00013	-0.00003	-0.00041	-0.00031	A mesonic
220	3.2	0.00054	-0.00048	-0.00084	-0.00077	ChPT program
220	4.3	-0.00007	-0.00009	-0.00005	-0.00021	framework
220	5.4	-0.00005	-0.00003	0.00001	-0.00006	Two-point
135	3.9	-0.00006	-0.00020	0.00005	-0.00021	K _{ℓ3} etc Extra
312	4.5	0.00047	0.00023	-0.00068	-0.00001	Results: twist+PQ
222	4.7	-0.00000	0.00018	-0.00003	0.00014	staggered
129	3.7	-0.00013	-0.00004	0.00009	-0.00007	Conclusions
319	4.5	0.00052	0.00037	-0.00081	0.00008	
134	3.7	-0.00016	0.00045	0.00013	0.00043	

Results: $\vec{\theta}_u = (0, \theta, 0, 0)$ (staggered)

Finite volume part of WI divided by $m_K^2 - m_{\pi}^2$:						
$\frac{\Delta^V m_K^2 - \Delta^V m_\pi^2}{\Delta^V f_1(0)} + \frac{q_\mu h^\mu}{\Delta^V f_1(0)} - \frac{\Delta^V \rho}{\Delta^V \rho}$						
m	${}^{2}_{K}-m_{\pi}^{2}$	· - · -	$m_{K}^{2} - m_{K}^{2}$	$m_\pi^2 m_K^2$	$-m_{\pi}^2$	Sonan Dijnens
m_{π}	$m_{\pi}L$	"mass"	" <i>f</i> ₊ "	" h_{μ} "	" $ ho$ "	Introduction
134	3.25	-0.00003	-0.00066	0.00008	-0.00061	FV: masses and decay
309	4.5	-0.00030	-0.00017	-0.00002	-0.00049	A mesonic
220	3.2	-0.00078	-0.00105	0.00036	-0.00148	ChPT program
220	4.3	-0.00033	-0.00034	0.00018	-0.00049	framework
220	5.4	-0.00008	-0.00010	0.00003	-0.00015	Two-point
135	3.9	-0.00002	-0.00032	0.00001	-0.00033	K _{ℓ3} etc Extra
312	4.5	-0.00019	0.00002	-0.00009	-0.00026	Results: twist+PQ
222	4.7	-0.00024	-0.00018	0.00017	-0.00025	staggered
129	3.7	-0.00003	-0.00050	-0.00001	-0.00054	Conclusions
319	4.5	-0.00026	0.00013	-0.00012	-0.00025	
134	3.7	-0.00005	-0.00058	0.00001	-0.00062	

Results: $\vec{\theta_u} = (0, \theta, 0, 0)$ (not staggered)

Finite	Finite volume part of WI divided by $m_K^2 - m_\pi^2$:						
$\Delta^V m_K^2 - \Delta^V m_{\pi}^2 + \Delta^V c (\alpha) + q_\mu h^\mu \qquad \Delta^V \rho$							
m	$\frac{2}{K} - m_{\pi}^2$	$-+\Delta T_+$	$(0) + \frac{1}{m_K^2} - \frac{1}{m_K^2}$	$m_{\pi}^2 = \frac{1}{m_K^2}$	$-m_{\pi}^2$		
m_{π}	$m_{\pi}L$	"mass"	" <i>f</i> ₊ "	$``h_{\mu}$ ''	" $ ho$ "		
134	3.25	-0.00049	-0.00124	0.00037	-0.00137		
309	4.5	-0.00033	0.00014	-0.00004	0.00022		
220	3.2	-0.00113	0.00077	0.00067	0.00031		
220	4.3	-0.00062	-0.00011	0.00046	-0.00027		
220	5.4	-0.00014	-0.00011	0.00010	-0.00016		
135	3.9	0.00004	-0.00045	-0.00008	-0.00049		
312	4.5	0.00031	0.00015	-0.00009	-0.00025		
222	4.7	-0.00037	-0.00015	0.00027	-0.00025		
129	3.7	-0.00000	-0.00066	-0.00005	-0.00071		
319	4.5	-0.00031	0.00015	-0.00011	-0.00027		
134	3.7	-0.00007	-0.00064	0.00001	-0.00070		

ChPT at FV and/or twisting Johan Bijnens

Results: staggered

Conclusions

- Showed you results for:
 - Masses and decay constants at finite volume at two-loops for many cases (two and three flavour, partially quenched and QCDlike models)
 - Hadronic vacuum polarization: vector two-point function
 - Connected versus disconnected at two-loops
 - Connected: twisting and finite volume at two-loops
 - $K_{\ell 3}$ twisted and staggered at one-loop
 - The WI are satisfied very exactly (note rounding)
 - The corrections are small for present lattices (< 0.1%)
- Be careful: ChPT must exactly correspond to your lattice calculation
- Programs available (for published ones) via CHIRON Those for this talk: sometime later this year

ChPT at FV and/or twisting

Johan Bijnens

Introduction

FV: masses and decay

A mesonic ChPT program framework

Two-point

 $K_{\ell 3}$ etc