An a_0 resonance in strongly coupled $\pi\eta, K\bar{K}$ scattering from lattice QCD

PRD93 094506 (2016)
(with David Wilson and Robert Edwards)
the light scalar mesons - empirically

conventional to put them in an ‘inverted’ mass nonet

but how similar are they really?

let’s study their appearance within QCD ...

an a_0 resonance ... | lattice 2016 | 7.26.16
the light scalar mesons - empirically

conventional to put them in an ‘inverted’ mass nonet

but how similar are they really?

‘start’ with the a_0 resonance ...
the $a_0(980)$ as it really is - a resonance

- sharp experimental enhancement at $K\bar{K}$ threshold decaying to $\pi\eta$

- usually observed in ‘less-simple’ production processes

 e.g. $p\bar{p}\to \pi\pi\eta$
 $\phi\to \gamma\pi\eta$

- amplitude models typically give $\frac{g^2(K\bar{K})}{g^2(\pi\eta)} \sim 1$
the $a_0(980)$ as it really is - a resonance

- sharp experimental enhancement at $K\bar{K}$ threshold decaying to $\pi\eta$

- usually observed in 'less-simple' production processes e.g. $pp \rightarrow \pi\pi\eta$, $\phi \rightarrow \gamma\pi\eta$
- amplitude models typically give $\frac{g^2(K\bar{K})}{g^2(\pi\eta)} \sim 1$

our first task:
- compute coupled-channel $\pi\eta/K\bar{K}$ scattering amplitudes
- finite-volume spectra

E

\[a_0(980) \]

$K\bar{K}_{\text{thr.}}$
correlation functions

- matrices of correlation functions with a large operator basis

“$q\bar{q}$”-like $\bar{\psi}\Gamma D\ldots D\psi$

$\pi\eta$-like $\sum_{\bar{p}_1,\bar{p}_2} C(\bar{p}_1, \bar{p}_2; \bar{P}) \pi(\bar{p}_1) \eta(\bar{p}_2)$

$K\bar{K}$-like $\sum_{\bar{p}_1,\bar{p}_2} C(\bar{p}_1, \bar{p}_2; \bar{P}) K(\bar{p}_1) \bar{K}(\bar{p}_2)$

$\pi\eta'$-like $\sum_{\bar{p}_1,\bar{p}_2} C(\bar{p}_1, \bar{p}_2; \bar{P}) \pi(\bar{p}_1) \eta'(\bar{p}_2)$

(with optimized pseudoscalar operators)
correlation functions

- matrices of correlation functions with a large operator basis

“$q\bar{q}$”-like $\bar{\psi}\Gamma D \ldots D\psi$

$\pi\eta$-like $\sum_{\bar{p}_1, \bar{p}_2} C(\bar{p}_1, \bar{p}_2; \bar{P}) \pi(\bar{p}_1)\eta(\bar{p}_2)$

$K\bar{K}$-like $\sum_{\bar{p}_1, \bar{p}_2} C(\bar{p}_1, \bar{p}_2; \bar{P}) K(\bar{p}_1)\bar{K}(\bar{p}_2)$

$\pi\eta'$-like $\sum_{\bar{p}_1, \bar{p}_2} C(\bar{p}_1, \bar{p}_2; \bar{P}) \pi(\bar{p}_1)\eta'(\bar{p}_2)$

(with optimized pseudoscalar operators)

many Wick contractions required, including annihilations ...

e.g.

... distillation
totally straightforward, massive reuse of propagators
\(I=1, G=- \) spectra

- spectra obtained from variational analysis

\[m_\pi \sim 391 \text{ MeV} \]
\[16^3, 20^3, 24^3 \]
\[a_s \sim 0.12 \text{ fm} \]
\[a_t \sim a_s / 3.5 \]
coupled channel scattering

- finite-volume formalism established

\[\det \left[t^{-1}(E) + i\rho(E) - M(E, L) \right] = 0 \]

scattering matrix \(t \)

phase space \(t \)

known functions \(t \)

in the two-channel case \(t = \begin{bmatrix} t_{\pi\eta\rightarrow\pi\eta} & t_{\pi\eta\rightarrow K\bar{K}} \\ t_{K\bar{K}\rightarrow\pi\eta} & t_{K\bar{K}\rightarrow K\bar{K}} \end{bmatrix} \)
coupled channel scattering

- finite-volume formalism established

\[
\det \left[t^{-1}(E) + i\rho(E) - M(E, L) \right] = 0
\]

in the two-channel case

\[
t = \begin{bmatrix}
t_{\pi\eta\to\pi\eta} & t_{\pi\eta\to K\bar{K}} \\
t_{K\bar{K}\to\pi\eta} & t_{K\bar{K}\to K\bar{K}}
\end{bmatrix}
\]

- parameterizing the energy-dependence in a unitarity-preserving way

\[K\text{-matrix approach}\]

\[
t^{-1}(E) = K^{-1}(E) + I(E)
\]

\[\text{Im} \ (I(E))_{ij} = -\delta_{ij} \rho_i(E)\]

e.g. “Chew-Mandelstam” phase-space

\[\begin{aligned}
(K(E))_{ij} &= \sum_p \frac{g^{(p)}_i g^{(p)}_j}{m_p^2 - E^2} + \sum_n \gamma^{(n)}_{ij} (E^2)^n
\end{aligned}\]
$\pi\eta/K\bar{K}$ scattering describing the spectra

K-matrix parameterization: one pole plus constant matrix

(6 free parameters)

$m_\pi \sim 391$ MeV

$\chi^2/N_{dof} = \frac{58.0}{47 - 6} = 1.4$
πη/KK scattering in J^P = 0^+

\[m_\pi \sim 391 \text{ MeV} \]

\[\rho_i \rho_j |t_{ij}|^2 \]

\[\pi\eta \rightarrow \pi\eta \]

\[\pi\eta \rightarrow KK \]

\[\pi\eta' \rightarrow KK \]

\[a_t E_{cm} \]

\[\pi\eta \] thr.

\[0.18 \]

\[0.19 \]

\[0.20 \]

\[0.21 \]

\[0.22 \]

\[0.23 \]

\[0.1 \]

\[0.2 \]

\[0.3 \]

\[0.4 \]

\[0.5 \]

\[0.6 \]

\[0.7 \]
parameterization variation

\[\rho_i \rho_j |t_{ij}|^2 \]

\(K\bar{K} \rightarrow K\bar{K} \)

\(\pi\eta \rightarrow \pi\eta \)

\(\pi\eta \rightarrow K\bar{K} \)

\(m_\pi \sim 391 \text{ MeV} \)
πη/KK scattering in \(J^P = 0^+ \)

Strong cusp in \(πη \) at KK threshold

Rapid turn-on of KK amplitudes

Indicative of a nearby resonance?
πη/KK scattering in $J^P = 0^+$

Strong cusp in $\pi\eta$ at KK threshold

Rapid turn-on of KK amplitudes indicative of a nearby resonance?

How do we determine rigorously if an amplitude is resonant?

Look for a pole singularity at complex energy

$$t_{ij}(s) \sim \frac{g_i g_j}{s_0 - s}$$

$$\text{Re}[\sqrt{s_0}] \sim \text{‘mass’}$$

$$2 \cdot \text{Im}[\sqrt{s_0}] \sim \text{‘width’}$$

$m_\pi \sim 391 \text{ MeV}$

$\rho_i \rho_j |t_{ij}|^2$
\[\pi \eta / K \bar{K} \text{ scattering in } J^P = 0^+ \]

- we find a single dominant (nearby) pole

\[m_\pi \sim 391 \text{ MeV} \]

Complex Energy Plane

Complex Momentum Plane

<table>
<thead>
<tr>
<th>Sheet</th>
<th>(\text{Im} k_{\eta \eta})</th>
<th>(\text{Im} k_{K \bar{K}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>II</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>III</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IV</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>
\(\pi \eta / K \bar{K} \) scattering in \(J^P = 0^+ \)

- we find a single dominant (nearby) pole

\[m_\pi \sim 391 \text{MeV} \]
πη/KK scattering in $J^P = 0^+$

scale setting using the Ω baryon mass

$m_\pi \sim 391$ MeV

- resonance found near $K\bar{K}$ threshold

pole position

$$\sqrt{s_0} = \left((1177 \pm 27) + \frac{i}{2}(49 \pm 33)\right)\text{MeV}$$

$$\text{Re}\sqrt{s_0} - 2m_K = 79 \pm 27$$

pole coupling ratio

$$\left|\frac{g_{K\bar{K}}}{g_{\pi\eta}}\right| = 1.3(4)$$
Raul Briceño (previous session) presented $\pi\pi$ elastic scattering in $I=0$ with the σ
- bound state at $m_\pi=391$ MeV
- broad resonance at $m_\pi=236$ MeV

extension to coupled channel ($\pi\pi$, KK, ...) and likely $f_0('980')$ coming up

πK, ηK scattering already done at $m_\pi=391$ MeV
... at $m_\pi=236$ MeV to come soon ...

$\pi\eta$, $K\bar{K}$ at $m_\pi=236$ MeV to come soon ...

κ as a virtual bound-state?

- [PRL113 182001 (2014)]
- [PRD91 054008 (2015)]
what are the scalar mesons?

• what tools do we have at our disposal?
 • quark mass dependence of the pole positions and channel couplings
 • distribution of poles across Riemann sheets
 may be relatable to loose meson-meson molecule versus tightly bound object
 • coupling to external currents
 form-factors from residue at the resonance pole
 • and things we haven’t thought of yet ...

finite-volume formalism demonstrated with $\gamma\pi \to \pi\pi$

$\gamma^* \pi \to \pi\pi$

$Q^2 = 0$

$Q^2 = 0.803 \text{GeV}^2$

$E_{\pi\pi}/m_\pi$

$A(E_{\pi\pi},Q^2)$

PRL115 242001 (2015)
PRD93 114508 (2016)

$\pi\pi \to \pi\pi$

$m_\pi \sim 391 \text{MeV}$
an a_0 resonance ...

lattice 2016 | 7.26.16