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Correlators in coordinate Sp.
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Spectral functions
Correlators are related to spectral functions 

Hadronic τ decays

3
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FIGURE 2.10: Spectral functions ρ(1)Γ (s) measured by the ALEPH collaboration
[30] for Γ = V (top/left), Γ = A (top/right), Γ = V + A (bottom/left), and
Γ = V − A (bottom/right), plotted with the prediction of the parton model and
perturbation theory, and the fit result according to the resonance model.

Inserting this to (2.66) and treating q2 as the x-differential, we obtain

Π(1)
V/A(x) =

3

8π4

∫ ∞

0
ds s3/2ρ(1)V/A(s)

K1(
√
s|x|)

|x| . (2.68)

The treatment of the spin-zero contribution is applicable as follows. In the isospin limit, the

spin-zero contribution to the vector channel is exactly zero, ρ(0)V (s) = 0 in the isospin limit and

therefore ΠV (x) = Π(1)
V obeys. The spin-zero component for the axial-vector channel contains,

on the other hand, the pion pole. The magnitude of the pion pole is estimated from the pion

decay constant through the PCAC relation. Thus, the axial-vector correlator including the pion

pole can be calculated by

ΠA(x) ≃
3

8π4

∫ ∞

0
ds s3/2ρ(1)A (s)

K1(
√
s|x|)

|x| − f2
πM

3
π

2π2
K1(Mπ|x|)

|x| . (2.69)

Schäfer and Shuryak [14] converted the ALEPH data [61] to the Euclidean correlators in the

coordinate space including the pion pole and the results were used for the tests of prediction of

4-loop
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Experimental correlators
Dispersion relation for Euclidean coordinate Sp.
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Experimental correlators
Dispersion relation for Euclidean coordinate Sp.
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this result?
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Outline

1. Lattice setup 
2+1 Möbius DW fermions 
3 cutoffs 
14 lattice ensembles 

2. Consistency between lattice & experiment 
V+A, V−A channels 
Good agreement with experiment at short & middle distances 

3. Test of OPE 
Agreement at short distances < 0.3 fm

5
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Lattice calculation

We analyze 

Clean separation of different contributions 

Lattice action 
2 + 1 Möbius DW fermions w/ 3-step stout link smearing 
Symanzik improved gauge action 
3 cutoffs 

Renormalization factor is determined in MT et al, 1604.08702[hep-lat] 

 from a matching to 4-loop PT

6

RV ±A(x) =
�V (x) ± �A(x)

2�free
V (x)|mq=0
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Ensembles

Residual mass 
O(1 MeV) for the coarsest lattice  
Negligible for finer lattices

7

a	[fm] Volume ams amud	(Mπ	[MeV])

0.080
323x64x12

0.030 0.0070	(300),	0.0120	(400),	0.0190	(500)

0.040 0.0070	(300),	0.0120	(400),	0.0190	(500)

483x96x12 0.040 0.0035	(230)

0.055 483x96x8
0.018 0.0042	(300),	0.0080	(400),	0.0120(500)

0.025 0.0042	(300),	0.0080	(400),	0.0120(500)

0.044 643x128x8 0.015 0.0030	(300)
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Reduction of discretization effect
Tree-level correction

8
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Reduction of discretization effect
Tree-level correction
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V + A channel

9
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    Dependence on light quark mass 
                        RV+A (a = 0.055 fm)

V + A channel
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V + A channel

    Dependence on a 
                                 RV+A (Mπ ~ 300 MeV)
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V + A channel

    Dependence on a 
                                 RV+A (Mπ ~ 300 MeV)
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V + A channel
Global fit 
1. RV+A(a,Mπ,xc) : average of RV+A(a,Mπ,x) over x ∈ [xc−δx,xc+δx] 

2. Chi2 fit by 

Good agreement with Exp.  
    for x > 0.3 fm

11
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Non-perturbative at 0.5 fm

12

Separating the contributions to RV+A 

Non-perturbative effect is very significant already at 0.5 fm, 
where lattice can reproduce the Exp. data
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Perturbatively vanish in the chiral limit 

Dependence on input mass

V − A channel

13
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     → vanish near x = 0 

Non-perturbative effect    
significant for x > 0.2 fm 

Mass dependence               
clear at short distances

RV−A (a = 0.055 fm)
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V − A channel

Dependence on a 
                                        RV−A (Mπ ~ 300 MeV)
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V − A channel
Extrapolation 

Agreement at short 
distances (~ 0.2 fm)       
as well as long distances

15
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Does OPE describe Exp & Lat?
OPE : 

Useful only at short distances < 0.3 fm 
6-dim is significant at 0.3 fm

16
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Spectral functions at s > mτ2

Experimental data present only in s < mτ2 
Quark-Hadron duality violation (DV) 
ρV/A(s) at s > 0 disagrees with perturbation & OPE 

Separation: ρV/A(s) = ρV/A(s) + ρV/A(s) 
Resonance model (large NC & Regge theory)

17

DVpert

�DV
V/A(s) = �V/Ae��V/As sin(�V/A + �V/As)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 0  1  2  3  4  5 0.0

0.2

0.4

0.6

0.8

1.0

 0  1  2  3  4  5

Fit range

Fit range

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 0  1  2  3  4  5

ρ(1
)

V

s [GeV2]

ALEPH data
Parton model
Parterbation

Fit result 

0.0

0.2

0.4

0.6

0.8

1.0

 0  1  2  3  4  5

ρ(1
)

A

s [GeV2]

ALEPH data
Parton model
Parterbation

Fit result 

Figure 1: ALEPH τ spectral functions for V +A (left) and V −A (right) channels. These
plots do not include the contribution of spin zero, i.e. mainly of the pion pole.

in the normalization of

RV±A =
ΠV±A(x)

2Πfree
V (x)

. (4)

For the lattice lattice calculation, RV±A(x) is multiplied by the renormalization factor

ZMS
V (a)

2
.

3 Spectral functions in s < m2
τ and s > m2

τ

In s < m2
τ , there are experimental data of the spectral functions. The experimental

data of the vector and axial-vector spectral functions are shown by filled circles in Fig. 1.

Since ALEPH data at s ≃ m2
τ suffer from large error, however, I discard the last two data

points (s > 2.8 GeV2).

In s > 2.8 GeV2, we need other sources about the spectral functions. One possible

source is perturbation theory, which gives the spectral functions to the four-loop level [3]

shown by the solid lines in Fig. 1.

However, it was suggested that the spectral functions in perturbation theory or OPE

may disagree with those in full QCD beyond the uncertainty of the truncation of the per-

turbative expansion (and OPE). This is because the exponential dumping in the Euclidean

region becomes the oscillatory behavior in the Minkowski due to some singularities. Re-

cently, the spectral functions at s > m2
τ is usually treated by the resonance based model

[4],

ρV/A(s)
large s−−−−−→ κV/Ae

−γV/As sin
(
αV/A + βV/As

)
+ Perturbation, (5)

with unknown parameters αV/A,βV/A, γV/A, and κV/A. The result of the χ2 fitting by this

function is shown by the dashed curve and the green band in Fig. 1.

2
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Correlators from experiments

  

key 

In Euclidean, DV is absent and ‘PT’ is close to ‘model’ 
In |x| < 0.2 fm, mostly perturbative 

If lattice calculation at |x| ~ 0.2 fm is possible 
       αs can be determined

18
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FIGURE 2.11: RV/A calculated from the ALEPH spectral functions, perturbation
theory, and resonance based model plotted as functions of x.

the quenched lattice alculation by DeGrand [8].

In this work, we analyze the quantity

RV/A(x) =
Π(1)

V/A(x)

Πfree
V/A(x)|mq=0

, (2.70)

where the pion pole in the axial-vector channel is dropped, using the latest ALEPH data [39]

and the 14 lattice ensembles dynamically generated with the simulation parameters closer to the

physical point. There are at least two reasons why we focus only on the spin-one components.

One is that the pion pole might be contaminating when we perform the chiral extrapolation.

The other is that adding the pion pole needs the extra input parameters, the decay constant and

the pion mass.

Figure 2.11 shows RV/A(x) calculated from the following three methods. One is based on

perturbation theory, in which the vector and axial-vector channels are degenerate. The second

method is to use the ALEPH spectral function for s ≤ 2.7 GeV2 and perturbation theory for

larger s. The other is the resonance model which is explained in the previous section. In this

method, we use the ALEPH data for s ≤ 2.7 GeV2 and the fit result (2.65) of the model for larger

s. We find that the perturbative region is seen in x ! 0.2 fm and the degeneracy between the

vector and axial-vector channels is violated already at x = 0.3 fm. Therefore we can conclude

that discretization effects need to be under controlled at least at x ≃ 0.2 fm to determine the

strong coupling constant from lattice calculations. As expected, the effect of the duality viola-

tion does not seem to appear significantly in the Euclidean domain. However, there seems to be

2.6. Correlators converted from experiments 29
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Π(1)

V/A(x)

Πfree
V/A(x)|mq=0

, (2.70)

where the pion pole in the axial-vector channel is dropped, using the latest ALEPH data [39]

and the 14 lattice ensembles dynamically generated with the simulation parameters closer to the

physical point. There are at least two reasons why we focus only on the spin-one components.

One is that the pion pole might be contaminating when we perform the chiral extrapolation.

The other is that adding the pion pole needs the extra input parameters, the decay constant and

the pion mass.

Figure 2.11 shows RV/A(x) calculated from the following three methods. One is based on

perturbation theory, in which the vector and axial-vector channels are degenerate. The second

method is to use the ALEPH spectral function for s ≤ 2.7 GeV2 and perturbation theory for

larger s. The other is the resonance model which is explained in the previous section. In this

method, we use the ALEPH data for s ≤ 2.7 GeV2 and the fit result (2.65) of the model for larger

s. We find that the perturbative region is seen in x ! 0.2 fm and the degeneracy between the

vector and axial-vector channels is violated already at x = 0.3 fm. Therefore we can conclude

that discretization effects need to be under controlled at least at x ≃ 0.2 fm to determine the

strong coupling constant from lattice calculations. As expected, the effect of the duality viola-

tion does not seem to appear significantly in the Euclidean domain. However, there seems to be
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Current correlators at short & middle distances 

Good agreement between lattice and experiment even 
at short distances 

> 0.3 fm (V+A) 

> 0.2 fm (V−A) 

Prospects 
Determination of αs, <qq̄>, … 
Continuous link between perturbative and non-perturbative 
dynamics

Summary

19
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Diagonal cut

20

θ : angle between x & (1,1,1,1) 

large θ ⇔ large discretization effect 

Disc. eff. at 30° is already complicated 
Discard θ > 30°

�� �� �� �� �� ��
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Definitions & Dispersion relation
Vector & Axial-vector correlators 

Non-singlet local operators are used 

Experimental correlators through dispersion relation 

   

              : Spectral function 
                      Experimentally measured

21

Aµ(x) = ū�µ�5d(x)Vµ(x) = ū�µd(x),

�V (x) =
�

µ�Vµ(x)Vµ(0)†�, �A(x) =
�

µ�Aµ(x)Aµ(0)†�

�V/A(x) � 3

8�4

� �

0
ds s3/2�V/A(s)

K1(
�

s|x|)
|x|

�V/A(s)
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Correlators from experiments
Momentum space 

Dispersion relation 

We analyze the projection to J = 1 

   

                                             : spectral function

22

��(J)
V/A(�q2) = ��1

� �

0
ds

Im ��(J)
V/A(s)

(s + q2)
� subtractions

experimentally measured K1: modified Bessel function

�(1)
V/A(x) � 3

8�4

� �

0
ds s3/2�V/A(s)

K1(
�

s|x|)
|x|

�V/A(s) � 2� Im �(1)
V/A(s)

�V/A(x) =
1

4�3

� �

0
ds s3/2(3 Im ��(1)

V/A(s) � Im ��(0)
V/A(s))

K1(
�

s|x|)
|x|

= (�µ�q2 � qµq�) ��(1)
V/A(�q2) � qµq�

��(0)
V/A(�q2)

��V/A,µ�(q) =

�
d4x e�iqx�V/A,µ�(x)
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Separating the region of s
Separation of contributions of ρV/A in the four region of s 

 :  s > 2.7 GeV2 
 : (mρ/a1 + δmρ/a1)2 < s < 2.7 GeV2 
 : (mρ/a1 − δmρ/a1)2 < s < (mρ/a1 + δmρ/a1)2 
 : 0 < s < (mρ/a1 − δmρ/a1)2

23
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FIGURE 2.12: Separation of the contribution of the spectral function ρV (s) to
RV (x).
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