Current correlators
 in the coordinate space at short distances

Masaaki Tomii \&
 Shoji Hashimoto

The Graduate University for Advanced Studies

Correlators in coordinate Sp .

$\Pi_{V / A}(x)=\sum_{\mu}\left\langle J_{\mu}^{V / A}(x) J_{\mu}^{V / A}(0)^{\dagger}\right\rangle$ defined in the Euclidean Sp.

is Lattice can calculate them from 1st principle

Spectral functions

O Correlators are related to spectral functions

$$
\rho(s) \propto \operatorname{Im} \widetilde{\Pi}(s)
$$

O Hadronic τ decays

Experimental correlators

O Dispersion relation for Euclidean coordinate Sp.

$$
\Pi_{V / A}(x)=\frac{3}{8 \pi^{4}} \int_{0}^{\infty} \mathrm{d} s s^{3 / 2} \rho_{V / A}(s) \frac{K_{1}(\sqrt{s}|x|)}{|x|}
$$

Experimental correlators

O Dispersion relation for Euclidean coordinate Sp.

$$
\Pi_{V / A}(x)=\frac{3}{8 \pi^{4}} \int_{0}^{\infty} \mathrm{d} s s^{3 / 2} \rho_{V / A}(s) \frac{K_{1}(\sqrt{s}|x|)}{|x|}
$$

Outline

1. Lattice setup

- 2+1 Möbius DW fermions
- 3 cutoffs
- 14 lattice ensembles

2. Consistency between lattice \& experiment

- V+A, V-A channels
- Good agreement with experiment at short \& middle distances

3. Test of OPE

- Agreement at short distances $<0.3 \mathrm{fm}$

Lattice calculation

- We analyze

$$
R_{V \pm A}(x)=\frac{\Pi_{V}(x) \pm \Pi_{A}(x)}{\left.2 \Pi_{V}^{\text {free }}(x)\right|_{m_{q}=0}}
$$

Clean separation of different contributions
O Lattice action

- $2+1$ Möbius DW fermions w/ 3-step stout link smearing
- Symanzik improved gauge action
- 3 cutoffs

O Renormalization factor is determined in MT et al, 1604.08702[hep-lat] from a matching to 4-loop PT

Ensembles

a $[\mathrm{fm}]$	Volume	am	am ud$\left(\mathrm{M}_{\pi}[\mathrm{MeV}]\right)$
0.080	$32^{3} \times 64 \times 12$	0.030	$0.0070(300), 0.0120(400), 0.0190(500)$
		0.040	$0.0070(300), 0.0120(400), 0.0190(500)$
0.055	$48^{3} \times 96 \times 12$	0.040	$0.0035(230)$
0.044	$68^{3} \times 96 \times 8$	0.018	$0.0042(300), 0.0080(400), 0.0120(500)$
		0.025	$0.0042(300), 0.0080(400), 0.0120(500)$

- Residual mass
${ }^{\circ} \mathrm{O}(1 \mathrm{MeV})$ for the coarsest lattice
- Negligible for finer lattices

Reduction of discretization effect

- Tree-level correction

$$
\Pi_{V / A}^{\text {lat }}(x) \rightarrow \Pi_{V / A}^{\text {lat }}(x)-\left(\Pi_{V / A}^{\text {lat,free }}(x)-\Pi_{V / A}^{\text {cont,free }}(x)\right)
$$

Reduction of discretization effect

O Tree-level correction

$$
\Pi_{V / A}^{\text {lat }}(x) \rightarrow \Pi_{V / A}^{\text {lat }}(x)-\left(\Pi_{V / A}^{\text {lat,free }}(x)-\Pi_{V / A}^{\text {cont,free }}(x)\right)
$$

$\mathrm{V}+\mathrm{A}$ channel

$$
R_{V+A}(x)=\frac{\Pi_{V}(x)+\Pi_{A}(x)}{\left.2 \Pi_{V}^{\text {free }}(x)\right|_{m_{q}=0}}
$$

$\mathrm{V}+\mathrm{A}$ channel

Dependence on light quark mass

$$
R_{V+A}(\mathrm{a}=0.055 \mathrm{fm})
$$

$$
R_{V+A}(x)=\frac{\Pi_{V}(x)+\Pi_{A}(x)}{\left.2 \Pi_{V}^{\text {free }}(x)\right|_{m_{q}=0}}
$$

V + A channel

Dependence on a

V + A channel

Dependence on a

$\mathrm{V}+\mathrm{A}$ channel

O Global fit

1. $R_{V+A}\left(a, M_{\pi}, x_{c}\right)$: average of $R_{V+A}\left(a, M_{\pi}, x\right)$ over $x \in\left[x_{c}-\delta x, x_{c}+\delta x\right]$
2. Chi2 fit by

$$
\begin{aligned}
& R_{V+A}\left(a, M_{\pi}, x_{c}\right) \\
& \quad=R_{V+A}\left(0, m_{\pi}^{\text {phys }}, x_{c}\right) \\
& \quad+C_{1}\left(M_{\pi}^{2}-m_{\pi}^{\text {phys }}{ }^{2}\right)+C_{2} a^{2}
\end{aligned}
$$

Non-perturbative at 0.5 fm

* Non-perturbative effect is very significant already at 0.5 fm , where lattice can reproduce the Exp. data

V - A channel

O Perturbatively vanish in the chiral limit
O Dependence on input mass
Good chiral symmetry \rightarrow vanish near $x=0$

- Non-perturbative effect significant for $x>0.2 \mathrm{fm}$
- Mass dependence clear at short distances

V - A channel

O Dependence on a

- No significant a-dependence below 0.5 fm

V - A channel

O Extrapolation

$$
R_{V-A}\left(a, M_{\pi}, x_{c}\right)=R_{V-A}\left(0, m_{\pi}^{\mathrm{phys}}, x_{c}\right)+C_{1}\left(M_{\pi}^{2}-m_{\pi}^{\mathrm{phys}, 2}\right)+C_{2} a^{2}
$$

O Agreement at short distances ($\sim 0.2 \mathrm{fm}$) as well as long distances

Does OPE describe Exp \& Lat?

○ OPE : $R_{V-A}^{\mathrm{OPE}}(x)=W_{4} m_{q}\langle\bar{q} q\rangle x^{4}+W_{6}\langle\bar{q} q\rangle^{2} x^{6}+\cdots$ Shifman et al, 1979

- Useful only at short distances $\leqq 0.3 \mathrm{fm}$
- 6-dim is significant at 0.3 fm

Spectral functions at $s>m_{\tau}{ }^{2}$

- Experimental data present only in $s<m_{\tau}^{2}$
- Quark-Hadron duality violation (DV)
- $\rho_{V / A}(s)$ at $s>0$ disagrees with perturbation \& OPE
- Separation: $\rho_{V / A}(s)=\rho_{V / A}^{\text {pert }}(s)+\rho_{V / A}^{\mathrm{DV}}(s)$
- Resonance model (large $N_{C} \&$ Regge theory)

$$
\rho_{V / A}^{\mathrm{DV}^{\mathrm{D}}}(s)=\kappa_{V / A} \mathrm{e}^{-\gamma_{V / A} s} \sin \left(\alpha_{V / A}+\beta_{V / A} s\right)
$$

Correlators from experiments

$\bigcirc R_{V / A}(x)=\frac{\Pi_{V / A}^{(1)}(x)}{\left.\Pi_{V / A}^{\text {free }}(x)\right|_{m_{q}=0}}$

O key

	ALEPH+PT	ALEPH+model
R_{V}		$=$
R_{A}		$=$

O In Euclidean, DV is absent and 'PT' is close to 'model'

- In $|x|<0.2 \mathrm{fm}$, mostly perturbative
- If lattice calculation at $|x| \sim 0.2 \mathrm{fm}$ is possible
$\Rightarrow \alpha_{s}$ can be determined

Summary

O Current correlators at short \& middle distances
O Good agreement between lattice and experiment even at short distances
$\geq 0.3 \mathrm{fm}(\mathrm{V}+\mathrm{A})$
$\geq 0.2 \mathrm{fm}(\mathrm{V}-\mathrm{A})$

O Prospects

- Determination of $\alpha_{s},<\bar{q} q>, \ldots$
- Continuous link between perturbative and non-perturbative dynamics

Diagonal cut

$\circ \theta$: angle between $x \&(1,1,1,1)$
o large $\theta \Leftrightarrow$ large discretization effect Chu et al, 1993; Cichy et al 2012

- Disc. eff. at 30° is already complicated
- Discard $\theta \geq 30^{\circ}$

Definitions \& Dispersion relation

O Vector \& Axial-vector correlators

$$
\Pi_{V}(x)=\sum_{\mu}\left\langle V_{\mu}(x) V_{\mu}(0)^{\dagger}\right\rangle, \quad \Pi_{A}(x)=\sum_{\mu}\left\langle A_{\mu}(x) A_{\mu}(0)^{\dagger}\right\rangle
$$

O Non-singlet local operators are used

$$
V_{\mu}(x)=\overline{\mathrm{u}} \gamma_{\mu} \mathrm{d}(x), \quad A_{\mu}(x)=\overline{\mathrm{u}} \gamma_{\mu} \gamma_{5} \mathrm{~d}(x)
$$

O Experimental correlators through dispersion relation
$-\Pi_{V / A}(x) \equiv \frac{3}{8 \pi^{4}} \int_{0}^{\infty} \mathrm{d} s s^{3 / 2} \rho_{V / A}(s) \frac{K_{1}(\sqrt{s}|x|)}{|x|}$

- $\rho_{V / A}(s)$: Spectral function Experimentally measured

Correlators from experiments

- Momentum space

$$
\begin{aligned}
\widetilde{\Pi}_{V / A, \mu \nu}(q) & =\int \mathrm{d}^{4} x \mathrm{e}^{-\mathrm{i} q x} \Pi_{V / A, \mu \nu}(x) \\
& =\left(\delta_{\mu \nu} q^{2}-q_{\mu} q_{\nu}\right) \widetilde{\Pi}_{V / A}^{(1)}\left(-q^{2}\right)-q_{\mu} q_{\nu} \widetilde{\Pi}_{V / A}^{(0)}\left(-q^{2}\right)
\end{aligned}
$$

- Dispersion relation

$$
\begin{aligned}
& \widetilde{\Pi}_{V / A}^{(J)}\left(-q^{2}\right)=\pi^{-1} \int_{0}^{\infty} \mathrm{d} s \frac{\operatorname{Im} \widetilde{\Pi}_{V / A}^{(J)}(s)}{\left(s+q^{2}\right)}-\text { subtractions }
\end{aligned}
$$

$$
\Pi_{V / A}(x)=\frac{1}{4 \pi^{3}} \int_{0}^{\infty} \mathrm{d} s s^{3 / 2}\left(3 \operatorname{Im} \widetilde{\Pi}_{V / A}^{(1)}(s)-\operatorname{Im} \widetilde{\Pi}_{V / A}^{(0)}(s)\right) \frac{K_{1}(\sqrt{s}|x|)}{|x|}
$$

- We analyze the projection to $J=1$
- $\Pi_{V / A}^{(1)}(x) \equiv \frac{3}{8 \pi^{4}} \int_{0}^{\infty} \mathrm{d} s s^{3 / 2} \rho_{V / A}(s) \frac{K_{1}(\sqrt{s}|x|)}{|x|}$
- $\rho_{V / A}(s) \equiv 2 \pi \operatorname{Im} \Pi_{V / A}^{(1)}(s)$: spectral function

Separating the region of s

O Separation of contributions of $\rho_{V / A}$ in the four region of s

\square \} perturbation (or model)

$$
\begin{aligned}
& : s>2.7 \mathrm{GeV}^{2} \\
& :\left(m_{\rho / a 1}+\delta m_{\rho / a 1}\right)^{2}<s<2.7 \mathrm{GeV}^{2} \\
& :\left(m_{\rho / a 1}-\delta m_{\rho / a 1}\right)^{2}<s<\left(m_{\rho / a 1}+\delta m_{\rho / a 1}\right)^{2} \\
& : 0<s<\left(m_{\rho / a 1}-\delta m_{\rho / a 1}\right)^{2}
\end{aligned}
$$

