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Complex Langevin Method (CLM)
• Path integral for a theory with complex S 

• Langevin eq. for complexified variables 

• drift term                      , gaussian noise η(t) 
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• Probability distribution 

• complex weight ρ(x;t) 

• If the key identity holds and                   converges to a 
unique function, then                           and  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• The previous argument for the justification of the CLM uses the 
continuous Langevin equation from the outset. 

Starting from a discretized Langevin equation, the ε→0 limit 
turns out to be subtle. 

The expectation value of the time-evolved observable            , 
which plays an important role in the argument, can be ill-defined. 

We fix these subtleties and establish the argument for the 
justification. This leads to a simple condition, which tells us 
whether the results are reliable or not.  

Argument on the conditions 
for the CLM to work
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Discretized Langevin equation

•                             is a gaussian noise with probability  
 

• Expectation value
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• For holomorphic O(z)
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• The integrand involves the n-th power of the drift term  
→ The prob. dist. of the drift should fall off faster than 
any power law at large magnitude 

• If the integrals are convergent, we can take the ε→0 limit  

Subtlety 
in the ε time-evolution
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finite (τ) time-evolution  
and its subtlety

• Repeat the ε time-evolution 

• The infinite series should have a finite convergence radius 

• The prob. dist. of the drift : 

• i.e.            

• For the finite t-evolution of O(x) to be well-defined, the prob. 
dist. of the magnitude of the drift should fall off 
exponentially or faster
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Proof of the key identity
• We prove the following identity for any k by induction wrt t 

• At t=0, it is trivially satisfied because 

• Assume this holds at some t, then for τ<τconv  
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Demonstration of our condition  
in simple examples

• A model with a singular drift 
 

• A model with a possibility of excursions  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A model with a singular drift
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Figure 1: (Left) The real part of the expectation value of O(z) = z2 obtained by the CLM
for p = 4 is plotted against α. The solid line represents the exact result. (Right) Zoom-up
of the same plot in the region 3.6 ≤ α ≤ 4.2.
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Figure 2: The scatter plot of thermalized configurations (red dots) and the flow diagram
(arrows) are shown for α = 5 (Left) and α = 3 (Right) with p = 4. Filled circles represent
the fixed points, and the filled triangles represent the singular points.

of the drift term and show that it is only power-law suppressed at large magnitude when the
CLM fails, whereas it is exponentially suppressed when the CLM works. Thus the failures
of the CLM can be understood in a unified manner. Our condition is also of great practical
importance since it tells us clearly whether the obtained results are trustable or not.

3.1 A model with a singular drift

As a model with a singular drift, we consider the partition function [15]

Z =

∫
dxw(x) , w(x) = (x+ iα)p e−x2/2 , (3.1)

where x is a real variable and α and p are real parameters. For α ̸= 0 and p ̸= 0, the weight
w(x) is complex, and the sign problem occurs.
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p=4

CLM fails for ↵ . 3.6

[Nishimura-SS 15]

[Nagata-Nishimura-SS 16]



Probability distribution
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Demonstration of our condition
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We apply the CLM to (3.1). Since there is no symmetry that can be used for gauge
cooling, we do not introduce the gauge cooling procedure (2.10) or the probability distri-
bution (2.17) for the transformed variables. Otherwise, all the equations in the previous
section applies to the present case by just setting the number of variables to N = 1. The
drift term in this model is given by

v(z) =
p

z + iα
− z , (3.2)

which is singular at z = −iα.
The complex Langevin simulation is performed for p = 4 with various values of α using

the step-size ϵ = 10−5. The initial configuration is chosen to be z = 0, and the first
3× 105 steps are discarded for thermalization. After that, we make 1010 steps and perform
measurement every 103 steps. In Fig. 1 we plot the real part of the expectation value of
O(z) = z2 against α. It is found that the CLM gives the correct results for α ! 3.7.

In Fig. 2 we show the scatter plot of configurations obtained after thermalization for
α = 5 (Left) and α = 3 (Right). The data points appear near the singular point z = −iα
for α = 3 but not for α = 5. This change of behavior can be understood from the flow
diagram in the same Figure, which shows the normalized drift term v(z)/|v(z)| by an arrow
at each point. The fixed points of the flow diagram can be readily obtained by solving
v(z) = 0. For α > 2

√
p, there are two fixed points at

(x, y) =

(
0,−α±

√
α2 − 4p

2

)
, (3.3)

one of which (−) is attractive and the other (+) is repulsive. Since we adopt a real noise
in the complex Langevin equation (2.3), the thermalized configurations appear near the
horizontal line stemming from the attractive fixed point, and that is why no configuration
appears near the singular point.
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of the drift term and show that it is only power-law suppressed at large magnitude when the
CLM fails, whereas it is exponentially suppressed when the CLM works. Thus the failures
of the CLM can be understood in a unified manner. Our condition is also of great practical
importance since it tells us clearly whether the obtained results are trustable or not.

3.1 A model with a singular drift

As a model with a singular drift, we consider the partition function [15]

Z =

∫
dxw(x) , w(x) = (x+ iα)p e−x2/2 , (3.1)

where x is a real variable and α and p are real parameters. For α ̸= 0 and p ̸= 0, the weight
w(x) is complex, and the sign problem occurs.
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We apply the CLM to (3.1). Since there is no symmetry that can be used for gauge
cooling, we do not introduce the gauge cooling procedure (2.10) or the probability distri-
bution (2.17) for the transformed variables. Otherwise, all the equations in the previous
section applies to the present case by just setting the number of variables to N = 1. The
drift term in this model is given by

v(z) =
p

z + iα
− z , (3.2)

which is singular at z = −iα.
The complex Langevin simulation is performed for p = 4 with various values of α using

the step-size ϵ = 10−5. The initial configuration is chosen to be z = 0, and the first
3× 105 steps are discarded for thermalization. After that, we make 1010 steps and perform
measurement every 103 steps. In Fig. 1 we plot the real part of the expectation value of
O(z) = z2 against α. It is found that the CLM gives the correct results for α ! 3.7.

In Fig. 2 we show the scatter plot of configurations obtained after thermalization for
α = 5 (Left) and α = 3 (Right). The data points appear near the singular point z = −iα
for α = 3 but not for α = 5. This change of behavior can be understood from the flow
diagram in the same Figure, which shows the normalized drift term v(z)/|v(z)| by an arrow
at each point. The fixed points of the flow diagram can be readily obtained by solving
v(z) = 0. For α > 2

√
p, there are two fixed points at

(x, y) =

(
0,−α±

√
α2 − 4p

2

)
, (3.3)

one of which (−) is attractive and the other (+) is repulsive. Since we adopt a real noise
in the complex Langevin equation (2.3), the thermalized configurations appear near the
horizontal line stemming from the attractive fixed point, and that is why no configuration
appears near the singular point.

16

u = |v(z)| =
����

p

z + i↵
� z

����

prob. dist. of the drift

[Nagata-Nishimura-SS 16]



Demonstration of our condition

-4

-2

 0

 2

 4

 6

 8

 10

 0  1  2  3  4  5  6  7

R
e(

z2 )

α

exact
CLM

-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

 0
 0.1
 0.2

 3.6  3.8  4  4.2

R
e(

z2 )

α

exact
CLM

Figure 1: (Left) The real part of the expectation value of O(z) = z2 obtained by the CLM
for p = 4 is plotted against α. The solid line represents the exact result. (Right) Zoom-up
of the same plot in the region 3.6 ≤ α ≤ 4.2.

-5

-4

-3

-2

-1

-4 -3 -2 -1  0  1  2  3  4

Im
[z

]

Re[z]

p=4, α=5
Fxd. pt.

Sngl. pt.
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

-4 -3 -2 -1  0  1  2  3  4

Im
[z

]

Re[z]

p=4, α=3
Fxd. pt.

Sngl. pt.

Figure 2: The scatter plot of thermalized configurations (red dots) and the flow diagram
(arrows) are shown for α = 5 (Left) and α = 3 (Right) with p = 4. Filled circles represent
the fixed points, and the filled triangles represent the singular points.

of the drift term and show that it is only power-law suppressed at large magnitude when the
CLM fails, whereas it is exponentially suppressed when the CLM works. Thus the failures
of the CLM can be understood in a unified manner. Our condition is also of great practical
importance since it tells us clearly whether the obtained results are trustable or not.

3.1 A model with a singular drift

As a model with a singular drift, we consider the partition function [15]

Z =

∫
dxw(x) , w(x) = (x+ iα)p e−x2/2 , (3.1)

where x is a real variable and α and p are real parameters. For α ̸= 0 and p ̸= 0, the weight
w(x) is complex, and the sign problem occurs.
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CLM fails, whereas it is exponentially suppressed when the CLM works. Thus the failures
of the CLM can be understood in a unified manner. Our condition is also of great practical
importance since it tells us clearly whether the obtained results are trustable or not.
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As a model with a singular drift, we consider the partition function [15]

Z =

∫
dxw(x) , w(x) = (x+ iα)p e−x2/2 , (3.1)

where x is a real variable and α and p are real parameters. For α ̸= 0 and p ̸= 0, the weight
w(x) is complex, and the sign problem occurs.
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We apply the CLM to (3.1). Since there is no symmetry that can be used for gauge
cooling, we do not introduce the gauge cooling procedure (2.10) or the probability distri-
bution (2.17) for the transformed variables. Otherwise, all the equations in the previous
section applies to the present case by just setting the number of variables to N = 1. The
drift term in this model is given by

v(z) =
p

z + iα
− z , (3.2)

which is singular at z = −iα.
The complex Langevin simulation is performed for p = 4 with various values of α using

the step-size ϵ = 10−5. The initial configuration is chosen to be z = 0, and the first
3× 105 steps are discarded for thermalization. After that, we make 1010 steps and perform
measurement every 103 steps. In Fig. 1 we plot the real part of the expectation value of
O(z) = z2 against α. It is found that the CLM gives the correct results for α ! 3.7.

In Fig. 2 we show the scatter plot of configurations obtained after thermalization for
α = 5 (Left) and α = 3 (Right). The data points appear near the singular point z = −iα
for α = 3 but not for α = 5. This change of behavior can be understood from the flow
diagram in the same Figure, which shows the normalized drift term v(z)/|v(z)| by an arrow
at each point. The fixed points of the flow diagram can be readily obtained by solving
v(z) = 0. For α > 2

√
p, there are two fixed points at

(x, y) =

(
0,−α±

√
α2 − 4p

2

)
, (3.3)

one of which (−) is attractive and the other (+) is repulsive. Since we adopt a real noise
in the complex Langevin equation (2.3), the thermalized configurations appear near the
horizontal line stemming from the attractive fixed point, and that is why no configuration
appears near the singular point.
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of the drift term and show that it is only power-law suppressed at large magnitude when the
CLM fails, whereas it is exponentially suppressed when the CLM works. Thus the failures
of the CLM can be understood in a unified manner. Our condition is also of great practical
importance since it tells us clearly whether the obtained results are trustable or not.

3.1 A model with a singular drift

As a model with a singular drift, we consider the partition function [15]

Z =

∫
dxw(x) , w(x) = (x+ iα)p e−x2/2 , (3.1)

where x is a real variable and α and p are real parameters. For α ̸= 0 and p ̸= 0, the weight
w(x) is complex, and the sign problem occurs.
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of the drift term and show that it is only power-law suppressed at large magnitude when the
CLM fails, whereas it is exponentially suppressed when the CLM works. Thus the failures
of the CLM can be understood in a unified manner. Our condition is also of great practical
importance since it tells us clearly whether the obtained results are trustable or not.
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As a model with a singular drift, we consider the partition function [15]

Z =

∫
dxw(x) , w(x) = (x+ iα)p e−x2/2 , (3.1)

where x is a real variable and α and p are real parameters. For α ̸= 0 and p ̸= 0, the weight
w(x) is complex, and the sign problem occurs.
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We apply the CLM to (3.1). Since there is no symmetry that can be used for gauge
cooling, we do not introduce the gauge cooling procedure (2.10) or the probability distri-
bution (2.17) for the transformed variables. Otherwise, all the equations in the previous
section applies to the present case by just setting the number of variables to N = 1. The
drift term in this model is given by

v(z) =
p

z + iα
− z , (3.2)

which is singular at z = −iα.
The complex Langevin simulation is performed for p = 4 with various values of α using

the step-size ϵ = 10−5. The initial configuration is chosen to be z = 0, and the first
3× 105 steps are discarded for thermalization. After that, we make 1010 steps and perform
measurement every 103 steps. In Fig. 1 we plot the real part of the expectation value of
O(z) = z2 against α. It is found that the CLM gives the correct results for α ! 3.7.

In Fig. 2 we show the scatter plot of configurations obtained after thermalization for
α = 5 (Left) and α = 3 (Right). The data points appear near the singular point z = −iα
for α = 3 but not for α = 5. This change of behavior can be understood from the flow
diagram in the same Figure, which shows the normalized drift term v(z)/|v(z)| by an arrow
at each point. The fixed points of the flow diagram can be readily obtained by solving
v(z) = 0. For α > 2

√
p, there are two fixed points at

(x, y) =

(
0,−α±

√
α2 − 4p

2

)
, (3.3)

one of which (−) is attractive and the other (+) is repulsive. Since we adopt a real noise
in the complex Langevin equation (2.3), the thermalized configurations appear near the
horizontal line stemming from the attractive fixed point, and that is why no configuration
appears near the singular point.
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A model with a possibility of excursions
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Figure 5: (Left) The imaginary part of the expectation value of O(z) = z2 is plotted against
B for A = 1. The solid line represents the exact result. (Right) Zoom-up of the same plot
in the region 1.6 ≤ B ≤ 3.2.
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Figure 6: The scatter plot of thermalized configurations (red dots) and the flow diagram
(arrows) are shown for B = 2 (Left) and B = 4 (Right) with A = 1 in both cases. Filled
circles represent the fixed points. There is no singular point in this model.

around the singular point (x, y) = (0,−α) was introduced to investigate the singular-drift
problem. Since the magnitude of the drift term is given by u ∼ 1/r, the probability
distribution of the drift term is given by p(u) ∼ 2πr3ϕ(r) at small r. In Fig. 4, we therefore
show 2πr3ϕ(r) as a function of 1/r in the semi-log (Left) and log-log (Right) plots. We
observe a clear power-law tail for α ≤ 3.7. Thus, the problem of the large drift term can
also be detected by the radial distribution around the singularity if it is plotted in this way.

3.2 A model with a possibility of excursions

As a model with a possibility of excursions, we consider the partition function [19]

Z =

∫
dxw(x) , w(x) = e−

1
2 (A+iB)x2− 1

4x
4
, (3.6)
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around the singular point (x, y) = (0,−α) was introduced to investigate the singular-drift
problem. Since the magnitude of the drift term is given by u ∼ 1/r, the probability
distribution of the drift term is given by p(u) ∼ 2πr3ϕ(r) at small r. In Fig. 4, we therefore
show 2πr3ϕ(r) as a function of 1/r in the semi-log (Left) and log-log (Right) plots. We
observe a clear power-law tail for α ≤ 3.7. Thus, the problem of the large drift term can
also be detected by the radial distribution around the singularity if it is plotted in this way.

3.2 A model with a possibility of excursions

As a model with a possibility of excursions, we consider the partition function [19]
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where x is a real variable and A and B are real parameters. For B ̸= 0, the weight w(x) is
complex and the sign problem occurs.

We apply the CLM to the model (3.6). The drift term is given by

v(z) = −(A+ iB)z − z3 , (3.7)

which can be decomposed into the real and imaginary parts as

Re v(z) = −(Ax− By + x3 − 3xy2) ,

Im v(z) = −(Ay + Bx+ 3x2y − y3) . (3.8)

Note that each component of the drift term can become infinitely large with both positive
and negative signs at large |x| and |y|, which means that there is a potential danger of
excursions (or even runaways) in this model.

The complex Langevin simulation is performed for A = 1 with various values of B. The
simulation parameters are the same as those in section 3.1 except that here we replace the
step-size ϵ = 10−5 by ϵ = 0.01/|v(z)| when the magnitude of the drift term |v(z)| exceeds
103. The use of such an adaptive step-size [29] is needed10 to avoid the runaway problem
that occurs at B ≥ 3. In Fig. 5 we plot the imaginary part11 of the expectation value of
O(z) = z2. We find that the CLM gives correct results for B ! 2.8.

In Fig. 6 we show the scatter plot of configurations obtained after thermalization for
B = 2 (Left) and B = 4 (Right). The data points spread out in the large |y| region for
B = 4 but not for B = 2. This change of behavior can be understood from the flow diagram
in the same Figure. In fact, it was shown [19] that for B <

√
3 , there is a strip-like region

|y| ≤ C in which Im v(z) ≤ 0 for y > 0 and Im v(z) ≤ 0 for y < 0. In that case, the

10Strictly speaking, the use of an adaptive step-size may introduce certain systematic errors. However,
we consider that this effect is negligible since the probability of |v(z)| exceeding 103 is less than 10−4 even
for the largest B = 5 we studied.

11The real part shows similar behaviors, but the discrepancies from the exact result at B " 3 is less clear.
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around the singular point (x, y) = (0,−α) was introduced to investigate the singular-drift
problem. Since the magnitude of the drift term is given by u ∼ 1/r, the probability
distribution of the drift term is given by p(u) ∼ 2πr3ϕ(r) at small r. In Fig. 4, we therefore
show 2πr3ϕ(r) as a function of 1/r in the semi-log (Left) and log-log (Right) plots. We
observe a clear power-law tail for α ≤ 3.7. Thus, the problem of the large drift term can
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As a model with a possibility of excursions, we consider the partition function [19]
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Note that each component of the drift term can become infinitely large with both positive
and negative signs at large |x| and |y|, which means that there is a potential danger of
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step-size ϵ = 10−5 by ϵ = 0.01/|v(z)| when the magnitude of the drift term |v(z)| exceeds
103. The use of such an adaptive step-size [29] is needed10 to avoid the runaway problem
that occurs at B ≥ 3. In Fig. 5 we plot the imaginary part11 of the expectation value of
O(z) = z2. We find that the CLM gives correct results for B ! 2.8.

In Fig. 6 we show the scatter plot of configurations obtained after thermalization for
B = 2 (Left) and B = 4 (Right). The data points spread out in the large |y| region for
B = 4 but not for B = 2. This change of behavior can be understood from the flow diagram
in the same Figure. In fact, it was shown [19] that for B <
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3 , there is a strip-like region

|y| ≤ C in which Im v(z) ≤ 0 for y > 0 and Im v(z) ≤ 0 for y < 0. In that case, the

10Strictly speaking, the use of an adaptive step-size may introduce certain systematic errors. However,
we consider that this effect is negligible since the probability of |v(z)| exceeding 103 is less than 10−4 even
for the largest B = 5 we studied.

11The real part shows similar behaviors, but the discrepancies from the exact result at B " 3 is less clear.
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around the singular point (x, y) = (0,−α) was introduced to investigate the singular-drift
problem. Since the magnitude of the drift term is given by u ∼ 1/r, the probability
distribution of the drift term is given by p(u) ∼ 2πr3ϕ(r) at small r. In Fig. 4, we therefore
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As a model with a possibility of excursions, we consider the partition function [19]
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also be detected by the radial distribution around the singularity if it is plotted in this way.

3.2 A model with a possibility of excursions

As a model with a possibility of excursions, we consider the partition function [19]

Z =

∫
dxw(x) , w(x) = e−

1
2 (A+iB)x2− 1

4x
4
, (3.6)
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Figure 7: The probability distribution p(u) for the magnitude u = |v| of the drift term is
shown for various B within 1.6 ≤ B ≤ 3.2 in the semi-log (Left) and log-log (Right) plots.

where x is a real variable and A and B are real parameters. For B ̸= 0, the weight w(x) is
complex and the sign problem occurs.

We apply the CLM to the model (3.6). The drift term is given by

v(z) = −(A+ iB)z − z3 , (3.7)

which can be decomposed into the real and imaginary parts as

Re v(z) = −(Ax− By + x3 − 3xy2) ,

Im v(z) = −(Ay + Bx+ 3x2y − y3) . (3.8)

Note that each component of the drift term can become infinitely large with both positive
and negative signs at large |x| and |y|, which means that there is a potential danger of
excursions (or even runaways) in this model.

The complex Langevin simulation is performed for A = 1 with various values of B. The
simulation parameters are the same as those in section 3.1 except that here we replace the
step-size ϵ = 10−5 by ϵ = 0.01/|v(z)| when the magnitude of the drift term |v(z)| exceeds
103. The use of such an adaptive step-size [29] is needed10 to avoid the runaway problem
that occurs at B ≥ 3. In Fig. 5 we plot the imaginary part11 of the expectation value of
O(z) = z2. We find that the CLM gives correct results for B ! 2.8.

In Fig. 6 we show the scatter plot of configurations obtained after thermalization for
B = 2 (Left) and B = 4 (Right). The data points spread out in the large |y| region for
B = 4 but not for B = 2. This change of behavior can be understood from the flow diagram
in the same Figure. In fact, it was shown [19] that for B <

√
3 , there is a strip-like region

|y| ≤ C in which Im v(z) ≤ 0 for y > 0 and Im v(z) ≤ 0 for y < 0. In that case, the

10Strictly speaking, the use of an adaptive step-size may introduce certain systematic errors. However,
we consider that this effect is negligible since the probability of |v(z)| exceeding 103 is less than 10−4 even
for the largest B = 5 we studied.

11The real part shows similar behaviors, but the discrepancies from the exact result at B " 3 is less clear.

19

semi-log plot

u = |v(z)| = |(1 + iB)z � z3|

prob. dist. of the drift

[Nagata-Nishimura-SS 16]



Demonstration of our condition

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0  1  2  3  4  5  6

Im
(z

2 )

B

exact
CLM

-0.29
-0.28
-0.27
-0.26
-0.25
-0.24
-0.23
-0.22
-0.21
-0.2

 1.6  1.8  2  2.2  2.4  2.6  2.8  3  3.2

Im
(z

2 )

B

exact
CLM

Figure 5: (Left) The imaginary part of the expectation value of O(z) = z2 is plotted against
B for A = 1. The solid line represents the exact result. (Right) Zoom-up of the same plot
in the region 1.6 ≤ B ≤ 3.2.

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1  0  1  2  3

Im
[z

]

Re[z]

A=1,B=2
Fxd pt

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1  0  1  2  3

Im
[z

]

Re[z]

A=1,B=4
Fxd pt

Figure 6: The scatter plot of thermalized configurations (red dots) and the flow diagram
(arrows) are shown for B = 2 (Left) and B = 4 (Right) with A = 1 in both cases. Filled
circles represent the fixed points. There is no singular point in this model.

around the singular point (x, y) = (0,−α) was introduced to investigate the singular-drift
problem. Since the magnitude of the drift term is given by u ∼ 1/r, the probability
distribution of the drift term is given by p(u) ∼ 2πr3ϕ(r) at small r. In Fig. 4, we therefore
show 2πr3ϕ(r) as a function of 1/r in the semi-log (Left) and log-log (Right) plots. We
observe a clear power-law tail for α ≤ 3.7. Thus, the problem of the large drift term can
also be detected by the radial distribution around the singularity if it is plotted in this way.
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where x is a real variable and A and B are real parameters. For B ̸= 0, the weight w(x) is
complex and the sign problem occurs.

We apply the CLM to the model (3.6). The drift term is given by

v(z) = −(A+ iB)z − z3 , (3.7)

which can be decomposed into the real and imaginary parts as

Re v(z) = −(Ax− By + x3 − 3xy2) ,

Im v(z) = −(Ay + Bx+ 3x2y − y3) . (3.8)

Note that each component of the drift term can become infinitely large with both positive
and negative signs at large |x| and |y|, which means that there is a potential danger of
excursions (or even runaways) in this model.

The complex Langevin simulation is performed for A = 1 with various values of B. The
simulation parameters are the same as those in section 3.1 except that here we replace the
step-size ϵ = 10−5 by ϵ = 0.01/|v(z)| when the magnitude of the drift term |v(z)| exceeds
103. The use of such an adaptive step-size [29] is needed10 to avoid the runaway problem
that occurs at B ≥ 3. In Fig. 5 we plot the imaginary part11 of the expectation value of
O(z) = z2. We find that the CLM gives correct results for B ! 2.8.

In Fig. 6 we show the scatter plot of configurations obtained after thermalization for
B = 2 (Left) and B = 4 (Right). The data points spread out in the large |y| region for
B = 4 but not for B = 2. This change of behavior can be understood from the flow diagram
in the same Figure. In fact, it was shown [19] that for B <

√
3 , there is a strip-like region

|y| ≤ C in which Im v(z) ≤ 0 for y > 0 and Im v(z) ≤ 0 for y < 0. In that case, the

10Strictly speaking, the use of an adaptive step-size may introduce certain systematic errors. However,
we consider that this effect is negligible since the probability of |v(z)| exceeding 103 is less than 10−4 even
for the largest B = 5 we studied.

11The real part shows similar behaviors, but the discrepancies from the exact result at B " 3 is less clear.
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Demonstration of our 
condition in Chiral 

Random Matrix Theory



CLM for Chiral Random Matrix Theory

•   

• For small masses, naive application of the CLM fails due to the 
singular drift problem (large drift) 

• By using a gauge cooling, we can avoid the problem and make 
the CLM work even at small masses  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Demonstration of  
our condition in CRMT
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Summary
• We have established the argument for justification of the 
CLM by starting with a finite step-size ε 

• We find that in order for the CLM to work, the probability 
distribution of the drift should fall off exponentially or faster. 

• We demonstrate the validity of our condition in simple 
models involving the singular drift problem or the excursion 
problem and Chiral Random Matrix Theory. 

• Importantly, our condition turns out to be practically useful 
in the CLM for lattice QCD → Nagata’s talk (next)


