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Physical Features
• 3D propagators on initial and final time-slices grant better overlap with the states of interest thus

leading to a better signal.
• Short distance behaviour greatly improved by the use of extended operators compared to standard

local operators.
• Extended operators are well behaved under renormalization.
• 3D fermions mass m̃ tuned for a better overlap with physical states. Known how to keep m̃ fixed

while the lattice spacing a is varied.

Baryonic Operators

Operators are representations of O(a,b)
s,s3 ∈ Spin(3,Z) where (a, b) is the spin SU(2) representation

while s and s3 are the total spin and its projection. The operators are written in the Weyl spinor
formalism [3]:
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These operators in the correlators have definite parity:

B±
(a,b)⊕(b,a)

= B(a,b) ∓B(b,a)

Extended Operators
Non-local operators are built from quenched three dimensional fermions fields coupled via pseudo-
scalar bilinears with ordinary four dimensional fermions in the four dimensional bulk.

The quark Propagator takes the form :

S(x, t, 0) =
∑
y,y′

S3D(x,y′|x0 = t)γ5S4D(t,y′; 0,y)γ5S3D(y; 0|x0 = 0)

In this image there is a schematic representation of the baryonic two point function for the extended
operators. On the time-slices x0 = 0 and x0 = t there are the two 3D baryonic operators B±. Those
are coupled via pseudo-scalar bilinear operators to the bulk and therefore can propagate between the
time-slices.
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Fig. 1: Effective mass for different K3D

Large K3D, closer to the critical value Kcrit
3D = 0.208 leads to a stronger suppression of excited states

at the expense of computation time.Moreover the effective masses for greater K3D are subject to
greater fluctuations. We use as a possible compromise K3D = 0.185

Comparison with other Methods
Data has been obtained from 2+1 SU(3) degenerate CLS configurations [2] on a 96 × 32 × 32 × 32
lattice with open boundary conditions.
We compare with point sources:

Ψpnt(x, y) = δαβδ(y − x)

and Jacobi smearing:

Ψsm =

Nsm∑
i=0

(ksm∆)i δαβδ(y − x)

Nucleon Omega

0 5 10 15 20

0.5

1.0

1.5

T

M
ef
f

(a) Nucleon and Omega effective mass
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(b) Comparison between GEVP and single Nucleon Operators

In (a) is shown the effective mass of the Omega and the Nucleon obtained with the GEVP method,
the extracted effective masses for the extended operators in lattice units are:

amN = 0.526± 0.002

amΩ = 0.649± 0.003

In figure (b) a comparison between the effective mass extracted from the diagonal part of the correla-
tor made by the single operators

Cii(t) = 〈OiOi〉 i = 0, . . . , N − 1

of the nucleon and the GEVP is made. The GEVP uses additional information by building a matrix
correlation Mij function from the N different interpolating operators on two different time-slices [1].
We have utilized the operators Oi and diagonalized Mij for all methods separately :

Mij = C
−1

2

ik (t0)Ckl(t)C
−1

2

lj (t0) i, j = 0, . . . , N − 1

Even with a small basis of operators, N = 3 for the nucleon and N = 2 for the omega, the GEVP has
a better excited states suppression. Notice that the first two nucleon operators i = 0 and i = 1 in (b)
have the same coupling with the nucleon state.
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(c) Nucleon’s effective masses
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(d) Omegas’s effective masses

In figure (c) and (d) a comparison between the three methods is made. It is possible to see that the
extended operators have a better suppression of the contributions from the excited states as the short
distance behaviour is much more regular.
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(e) 3D Source |ψ|2(r) as a function of distance
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(f) |ψ|2 at different K3D

In figure (e) is plotted in log-scale the modulus squared of the 3D source as a function of distance for
the extended operators and the Jacobi smearing. |ψ|2 is rotationally invariant in both cases. In figure
(f) |ψ|2 is plotted at different K3D. For K3D → Kcrit

3D the overlap increases.
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