New extended interpolating fields built from threedimensional fermions

Francesco Scardino, Mauro Papinutto and Stefan Schaefer

University of Rome "La Sapienza", NIC DESY

Physical Features

- 3D propagators on initial and final time-slices grant better overlap with the states of interest thus leading to a better signal.
- Short distance behaviour greatly improved by the use of extended operators compared to standard local operators.
- Extended operators are well behaved under renormalization.
- 3D fermions mass \tilde{m} tuned for a better overlap with physical states. Known how to keep \tilde{m} fixed while the lattice spacing a is varied.

Baryonic Operators

Operators are representations of $O_{s,s_3}^{(a,b)} \in \text{Spin}(3,\mathbb{Z})$ where (a,b) is the spin SU(2) representation while s and s_3 are the total spin and its projection. The operators are written in the Weyl spinor formalism [3]:

Nucleon

$$\begin{split} \hat{p}_{\frac{1}{2},0}^{(\frac{1}{2},0)} &= \frac{1}{2}(u_1d_2 - u_2d_1)u_1 & \hat{p}_{\frac{1}{2}-\frac{1}{2}}^{(\frac{1}{2},0)} &= \frac{1}{2}(u_1d_2 - u_2d_1)u_1 \\ \hat{p}_{\frac{1}{2},0}^{(\frac{1}{2},0)} &= \frac{1}{2}(u_1d_2 - u_2d_1)u_1 & \hat{p}_{\frac{1}{2}-\frac{1}{2}}^{(\frac{1}{2},0)} &= \frac{1}{2}(u_1d_2 - u_2d_1)u_1 \\ p_{\frac{1}{2},1}^{(\frac{1}{2},1)} &= \frac{1}{14}\{(u_1d_2 + u_2d_1)u_1 - 2u_1d_1u_2 + 2(u_1d_2 - u_2d_1)u_1\} \\ p_{\frac{1}{2}-\frac{1}{2}}^{(\frac{1}{2},1)} &= -\frac{1}{14}\{(u_1d_2 + u_2d_1)u_2 - 2u_2d_2u_1 + 2(u_2d_1 - u_1d_2)u_2\} \end{split}$$

Omega

$$\Omega_{\frac{33}{2}}^{(\frac{1}{2},1)} = s_{\dot{1}}s_{\dot{1}}s_{1} \qquad \Omega_{\frac{31}{2}}^{(\frac{1}{2},1)} = \frac{1}{3}\{s_{\dot{1}}s_{\dot{1}}s_{2} + s_{\dot{1}}s_{\dot{2}}s_{1} + s_{\dot{2}}s_{\dot{1}}s_{1}\}$$

$$\Omega_{\frac{3}{2}-\frac{3}{2}}^{(\frac{1}{2},1)} = s_{\dot{2}}s_{\dot{2}}s_{2} \qquad \Omega_{\frac{3}{2}-\frac{1}{2}}^{(\frac{1}{2},1)} = \frac{1}{3}\{s_{\dot{1}}s_{\dot{2}}s_{1} + s_{\dot{2}}s_{\dot{2}}s_{1} + s_{\dot{2}}s_{\dot{1}}s_{2}\}$$

$$\Omega_{\frac{33}{2}}^{(\frac{3}{2},0)} = s_{1}s_{1}s_{1} \qquad \Omega_{\frac{31}{2}}^{(\frac{3}{2},0)} = \frac{1}{3}\{s_{1}s_{1}s_{2} + s_{1}s_{2}s_{1} + s_{2}s_{1}s_{1}\}$$

$$\Omega_{\frac{3}{2}-\frac{3}{2}}^{(\frac{3}{2},0)} = s_{2}s_{2}s_{2} \qquad \Omega_{\frac{3}{2}-\frac{1}{2}}^{(\frac{3}{2},0)} = \frac{1}{3}\{s_{1}s_{2}s_{2} + s_{2}s_{2}s_{1} + s_{2}s_{1}s_{2}\}$$

These operators in the correlators have definite **parity**:

$$B_{(a,b)\oplus(b,a)}^{\pm} = B_{(a,b)} \mp B_{(b,a)}$$

Extended Operators

Non-local operators are built from quenched three dimensional fermions fields coupled via pseudo-scalar bilinears with ordinary four dimensional fermions in the four dimensional bulk.

The quark Propagator takes the form:

$$S(\mathbf{x}, t, 0) = \sum_{\mathbf{y}, \mathbf{y}'} S_{3D}(\mathbf{x}, \mathbf{y}' | x_0 = t) \gamma_5 S_{4D}(t, \mathbf{y}'; 0, \mathbf{y}) \gamma_5 S_{3D}(\mathbf{y}; 0 | x_0 = 0)$$

In this image there is a schematic representation of the baryonic two point function for the extended operators. On the time-slices $x_0 = 0$ and $x_0 = t$ there are the two 3D baryonic operators \mathbf{B}^{\pm} . Those are coupled via pseudo-scalar bilinear operators to the bulk and therefore can propagate between the time-slices.

Fig. 1: Effective mass for different K_{3D}

Large K_{3D} , closer to the critical value $K_{3D}^{crit} = 0.208$ leads to a stronger suppression of excited states at the expense of computation time. Moreover the effective masses for greater K_{3D} are subject to greater fluctuations. We use as a possible compromise $K_{3D} = 0.185$

Comparison with other Methods

Data has been obtained from 2+1 SU(3) degenerate **CLS** configurations [2] on a $96 \times 32 \times 32 \times 32$ lattice with open boundary conditions.

We compare with point sources:

$$\Psi_{pnt}(x,y) = \delta_{\alpha\beta}\delta(y-x)$$

and Jacobi smearing:

$$\Psi_{sm} = \sum_{i=0}^{N_{sm}} (k_{sm}\Delta)^i \, \delta_{\alpha\beta}\delta(y-x)$$

In (a) is shown the effective mass of the Omega and the Nucleon obtained with the GEVP method, the extracted effective masses for the extended operators in lattice units are:

$$am_N = 0.526 \pm 0.002$$

 $am_\Omega = 0.649 \pm 0.003$

In figure (b) a comparison between the effective mass extracted from the diagonal part of the correlator made by the single operators

$$C_{ii}(t) = \langle O_i O_i \rangle$$
 $i = 0, \dots, N-1$

of the nucleon and the GEVP is made. The GEVP uses additional information by building a matrix correlation M_{ij} function from the N different interpolating operators on two different time-slices [1]. We have utilized the operators O_i and diagonalized M_{ij} for all methods separately:

$$M_{ij} = C_{ik}^{-\frac{1}{2}}(t_0)C_{kl}(t)C_{lj}^{-\frac{1}{2}}(t_0)$$
 $i, j = 0, \dots, N-1$

Even with a small basis of operators, N=3 for the nucleon and N=2 for the omega, the GEVP has a better excited states suppression. Notice that the first two nucleon operators i=0 and i=1 in (b) have the same coupling with the nucleon state.

In figure (c) and (d) a comparison between the three methods is made. It is possible to see that the extended operators have a better suppression of the contributions from the excited states as the short distance behaviour is much more regular.

In figure (e) is plotted in log-scale the modulus squared of the 3D source as a function of distance for the extended operators and the Jacobi smearing. $|\psi|^2$ is rotationally invariant in both cases. In figure (f) $|\psi|^2$ is plotted at different K_{3D} . For $K_{3D} \to K_{3D}^{crit}$ the overlap increases.

References

- [1] Martin Luscher and Ulli Wolff. How to Calculate the Elastic Scattering Matrix in Two-dimensional Quantum Field Theories by Numerical Simulation. *Nucl. Phys.*, B339:222–252, 1990.
- [2] M. Bruno *et al.*, JHEP **1502**, 043 (2015) doi:10.1007/JHEP02(2015)043 [arXiv:1411.3982 [hep-lat]].
- [3] Mauro Papinutto. Notes on baryon two-point correlators. *unpublished notes*, 2013.