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Brief review of motivations for lattice supersymmetry

Much interesting physics in 4D supersymmetric gauge theories:
dualities, holography, confinement, conformality, BSM, . . .

Lattice promises non-perturbative insights from first principles

Problem: Discrete spacetime breaks supersymmetry algebra{
QI

α,Q
J
α̇

}
= 2δIJσµ

αα̇Pµ where I, J = 1, · · · ,N

=⇒ Impractical fine-tuning generally required to restore susy,
especially for scalar fields from matter multiplets or N > 1

Solution: Preserve (some subset of) the susy algebra on the lattice
Possible for N = 4 supersymmetric Yang–Mills (SYM)
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Brief review of N = 4 SYM
N = 4 SYM is a particularly interesting theory
—AdS/CFT correspondence

—Testing ground for reformulations of scattering amplitudes

—Arguably simplest non-trivial field theory in four dimensions

Basic features:
SU(N) gauge theory with four Majorana ΨI and six scalars ΦIJ,

all massless and in adjoint rep.

Action consists of kinetic, Yukawa and four-scalar terms
with coefficients related by symmetries

Supersymmetric: 16 supercharges QI
α and Q

I
α̇ with I = 1, · · · ,4

Fields and Q’s transform under global SU(4) ' SO(6) R symmetry

Conformal: β function is zero for any ’t Hooft coupling λ
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Exact supersymmetry on the lattice
Equivalent constructions from orbifolding and “topological” twisting:

The 16 spinor supercharges QI
α and Q

I
α̇ fill a Kähler–Dirac multiplet:

Q1
α Q2

α Q3
α Q4

α

Q
1
α̇ Q

2
α̇ Q

3
α̇ Q

4
α̇


= Q+Qµγµ +Qµνγµγν +Qµγµγ5 +Qγ5

−→ Q+Qaγa +Qabγaγb

with a,b = 1, · · · ,5

Q’s transform with integer spin under “twisted rotation group”

SO(4)tw ≡ diag
[
SO(4)euc ⊗ SO(4)R

]
SO(4)R ⊂ SO(6)R

This change of variables gives a susy subalgebra {Q,Q} = 2Q2 = 0
This subalgebra can be exactly preserved on the lattice
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Pertinent features of the lattice theory

All fields transform with integer spin under SO(4)tw — no spinors

QI
α and Q

I
α̇ −→ Q, Qa and Qab (a,b = 1, · · · ,5)

ΨI −→ η, ψa and χab (site, link, plaq.)

Uµ and ΦIJ −→ Ua = (Uµ, φ) + i(Bµ, φ) and Ua

Supersymmetry transformations include Q Ua = ψa

=⇒ Links must be in algebra, with continuum limit Ua = IN +Aa

=⇒ U(N) = SU(N)⊗ U(1) gauge invariance

Five links symmetrically span four dimensions
−→ A∗

4 lattice (4D analog of triangular lattice)

Basis vectors are linearly dependent
and non-orthogonal −→ λ = λlat/

√
5
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Improvement 1: Lattice action arXiv:1505.03135

Exact zero modes and flat directions must be regulated
in both the SU(N) and U(1) sectors

—Soft Q breaking scalar potential ∝ µ2 ∑
a
(
Tr

[
UaUa

]
− N

)2

lifts SU(N) flat directions

—Constraint on plaquette det. lifts U(1) zero mode & flat directions

Improved lattice action introduces
Q-exact plaquette det. deformation

Ward identity violations
decrease ∼500× for L = 16,

vanish 〈QO〉 ∝ (a/L)2

(Q forbids all dim-5 operators)
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Improvement 2: Lattice perturbation theory
Previous results for static potential V (r) showed discretization artifacts

 

Improve by applying tree-level lattice perturbation theory
for the N = 4 SYM bosonic propagator on the A∗

4 lattice:

V (r) −→ Vtree(rI) where
1
r2
I
≡ 4π2

∫
d4k

(2π)4
exp [ir · k ]∑4

µ=1 sin2 (
k · êµ / 2

)
êµ are A∗

4 lattice basis vectors (arXiv:1102.1725)

Momenta k = 2π
L

∑4
µ=1 nµĝµ depend on dual basis vectors
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Improvement 2: Lattice perturbation theory
Previous results for static potential V (r) showed discretization artifacts

 

Tree-level improvement significantly reduces discretization artifacts
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Coupling dependence of Coulomb coefficient

Fit V (r) to Coulombic
or confining form

V (r) = A− C/r

V (r) = A− C/r + σr

C is Coulomb coefficient
σ is string tension

V (r) is Coulombic at all λ:
fits to confining form produce vanishing string tension

C for U(4) in good agreement with perturbation theory for λ . 3/
√

5

U(2) and U(3) results less stable — working on further improvements
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Anomalous dimensions

N = 4 SYM is conformal at all λ −→ spectrum of scaling dimensions
that govern power-law decay of correlation functions

The Konishi operator is the simplest conformal primary operator

OK (x) =
∑

I

Tr
[
ΦI(x)ΦI(x)

]
, CK (r) ≡ OK (x + r)OK (x) ∝ r−2∆K (λ)

On lattice, extract scalar fields
from polar decomposition

Ua(n) −→ eϕa(n)Ua(n)

Olat
K (n) =

∑
a

Tr [ϕa(n)ϕa(n)]− vev
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Improvement 3: Lattice Konishi operator mixing
OK (x) =

∑
I

Tr
[
ΦI(x)ΦI(x)

]
−→ Olat

K (n) =
∑

a

Tr [ϕa(n)ϕa(n)]− vev

Recall twisted SO(4)tw involves only SO(4)R ⊂ SO(6)R

=⇒ The lattice Konishi operator mixes with the SO(4)R-singlet part
of an SO(6)R-nonsinglet operator OS (the “SUGRA” or 20′)

Need joint analyses including both operators

Konishi scaling dimension
from MCRG stability matrix

including both Olat
K and Olat

S

Impose protected ∆S = 2

Systematic uncertainties from
different amounts of smearing
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Recapitulation

Continuing progress in lattice N = 4 SYM

Improved action dramatically reduces Ward identity violations

Tree-level improved static potential reduces discretization artifacts

Promising initial results for Konishi anomalous dimension

Many more directions are being — or can be — pursued
I Understanding the (absence of a) sign problem
I Exploring the Coulomb branch (Higgs mechanism)
I Reducing to lower dimensions, possibly with less supersymmetry
I Adding matter fields for spontaneous supersymmetry breaking
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Advertisement: Public code for lattice N = 4 SYM

The lattice action is obviously very complicated
(the fermion operator involves &100 gathers)

To reduce barriers to entry our parallel code is publicly developed at
github.com/daschaich/susy

Evolved from MILC code, presented in arXiv:1410.6971
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Thank you!
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Thank you!

Collaborators
Simon Catterall, Poul Damgaard and Joel Giedt

Funding and computing resources
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Supplement: The sign problem

〈O〉 =
1
Z

∫
[dU ][dU ] O e−SB [U ,U ] pfD[U ,U ]

Pfaffian can be complex for lattice N = 4 SYM, pfD = |pfD|eiα

Complicates interpretation of
{

e−SB pfD
}

as Boltzmann weight

We carry out phase-quenched calculations with pfD −→ |pfD|

In principle need to reweight phase-quenched (pq) observables:

〈O〉 =

〈
Oeiα〉

pq〈
eiα

〉
pq

with
〈
Oeiα

〉
pq

=
1
Zpq

∫
[dU ][dU ]Oeiα e−SB |pfD|

=⇒ Monitor
〈
eiα〉

pq as function of volume, coupling, N
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Pfaffian phase dependence on volume and coupling

Left: 1− 〈cos(α)〉pq � 1 independent of volume and N at λlat = 1

Right: Newer 44 results at 4 ≤ λlat ≤ 8 show much larger fluctuations

May be interesting to check more volumes and N for improved action

Extremely expensive computation despite parallelization:
O(n3) scaling −→ ∼50 hours for single U(2) 44 measurement
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Two puzzles posed by the sign problem
With periodic temporal boundary conditions for the fermions

we have an obvious sign problem,
〈
eiα〉

pq consistent with zero

With anti-periodic BCs and all else the same eiα ≈ 1,
phase reweighting has negligible effect

Why such sensitivity to the BCs?

Also, other pq observables
are nearly identical

for these two ensembles

Why doesn’t the sign problem
affect other observables?
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Backup: Failure of Leibnitz rule in discrete space-time

Given that
{

Qα,Qα̇

}
= 2σµ

αα̇Pµ = 2iσµ
αα̇∂µ is problematic,

why not try
{

Qα,Qα̇

}
= 2iσµ

αα̇∇µ for a discrete translation?

Here ∇µφ(x) = 1
a [φ(x + aµ̂)− φ(x)] = ∂µφ(x) + a

2∂
2
µφ(x) +O(a2)

Essential difference between ∂µ and ∇µ on the lattice, a > 0

∇µ [φ(x)χ(x)] = a−1 [φ(x + aµ̂)χ(x + aµ̂)− φ(x)χ(x)]

= [∇µφ(x)]χ(x) + φ(x)∇µχ(x) + a [∇µφ(x)]∇µχ(x)

We only recover the Leibnitz rule ∂µ(fg) = (∂µf )g + f∂µg when a→ 0
=⇒ “Discrete supersymmetry” breaks down on the lattice

(Dondi & Nicolai, “Lattice Supersymmetry”, 1977)
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Backup: Twisting←→ Kähler–Dirac fermions

The Kähler–Dirac representation is related to the spinor QI
α,Q

I
α̇ by

Q1
α Q2

α Q3
α Q4

α

Q
1
α̇ Q

2
α̇ Q

3
α̇ Q

4
α̇


= Q+Qµγµ +Qµνγµγν +Qµγµγ5 +Qγ5

−→ Q+Qaγa +Qabγaγb

with a,b = 1, · · · ,5

The 4× 4 matrix involves R symmetry transformations along each row
and (euclidean) Lorentz transformations along each column

=⇒ Kähler–Dirac components transform under “twisted rotation group”

SO(4)tw ≡ diag
[
SO(4)euc ⊗ SO(4)R

]
↑

only SO(4)R ⊂ SO(6)R
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Backup: Twisted N = 4 SYM fields and Q

Everything transforms with integer spin under SO(4)tw — no spinors

QI
α and Q

I
α̇ −→ Q, Qa and Qab

ΨI −→ η, ψa and χab

Aµ and ΦIJ −→ Aa = (Aµ, φ) + i(Bµ, φ) and Aa

The twisted-scalar supersymmetry Q acts as

Q Aa = ψa Q ψa = 0

Q χab = −Fab Q Aa = 0
Q η = d Q d = 0

↖ bosonic auxiliary field with e.o.m. d = DaAa

1 Q directly interchanges bosonic←→ fermionic d.o.f.

2 The susy subalgebra Q2 · = 0 is manifest
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Backup: Lattice N = 4 SYM
The lattice theory is nearly a direct transcription,

despite breaking the 15 Qa and Qab

Covariant derivatives −→ finite difference operators

Complexified gauge fields Aa −→ gauge links Ua ∈ gl(N,C)

Q Aa −→Q Ua = ψa Q ψa = 0

Q χab = −Fab Q Aa −→Q Ua = 0
Q η = d Q d = 0

Geometry manifest: η and d on sites, Ua and ψa on links, etc.

Supersymmetric lattice action (QS = 0)
follows from Q2 · = 0 and Bianchi identity

S =
N

2λlat
Q

(
χabFab + ηDaUa −

1
2
ηd

)
− N

8λlat
εabcde χabDc χde
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Backup: A∗4 lattice with five links in four dimensions

Aa = (Aµ, φ) may remind you of dimensional reduction

On the lattice we want to treat all five Ua symmetrically
to obtain S5 −→ SO(4)tw symmetry

—Start with hypercubic lattice
in 5d momentum space

—Symmetric constraint
∑

a ∂a = 0
projects to 4D momentum space

—Result is A4 lattice
−→ dual A∗

4 lattice in real space
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Backup: Twisted SO(4) symmetry on the A∗4 lattice

—Can picture A∗
4 lattice

as 4D analog of 2D triangular lattice

—Basis vectors are linearly dependent
and non-orthogonal −→ λ = λlat/

√
5

—Preserves S5 point group symmetry

S5 irreps precisely match onto irreps of twisted SO(4)tw

5 = 4⊕ 1 : ψa −→ ψµ, η

10 = 6⊕ 4 : χab −→ χµν , ψµ

S5 −→ SO(4)tw in continuum limit restores the rest of Qa and Qab
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Backup: Hypercubic representation of A∗4 lattice

In the code it is very convenient to represent the A∗
4 lattice

as a hypercube with a backwards diagonal
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Backup: Restoration of Qa and Qab supersymmetries
Results from arXiv:1411.0166 to be revisited with improved action

Qa and Qab from restoration of R symmetry (motivation for A∗
4 lattice)

Modified Wilson loops test R symmetries at non-zero lattice spacing

Parameter c2 may need log. tuning in continuum limit
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Backup: More on flat directions
Supersymmetry transformations include Q Ua = ψa

=⇒ Links must be in algebra, with continuum limit Ua = IN +Aa

=⇒ U(N) = SU(N)⊗ U(1) gauge invariance

Flat directions in SU(N) sector are physical,
those in U(1) sector decouple only in continuum limit

Both must be regulated in calculations −→ two deformations needed:

SU(N) scalar potential ∝ µ2 ∑
a
(
Tr

[
UaUa

]
− N

)2

U(1) plaquette determinant ∼ G
∑

a 6=b (detPab − 1)

Scalar potential softly breaks Q supersymmetry
↖susy-violating operators vanish as µ2 → 0

Plaquette determinant can be made Q-invariant −→ improved action
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Backup: One problem with flat directions
Gauge fields Ua can move far away from continuum form IN +Aa

if Nµ2/(2λlat) becomes too small

Example for two-color (λlat, µ, κ) = (5, 0.2, 0.8) on 83×24 volume

Left: Bosonic action is stable ∼18% off its supersymmetric value

Right: Polyakov loop wanders off to ∼109
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Backup: Another problem with U(1) flat directions
Flat directions in U(1) sector can induce transition to confined phase

This lattice artifact is not present in continuum N = 4 SYM

Around the same λlat ≈ 2. . .
Left: Polyakov loop falls towards zero

Center: Plaquette determinant falls towards zero
Right: Density of U(1) monopole world lines becomes non-zero
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Backup: More on soft susy breaking
Until 2015 we used a more naive constraint on plaquette det.:

Ssoft =
N

2λlat
µ2

(
1
N

Tr
[
UaUa

]
− 1

)2

+ κ |detPab − 1|2

Both terms explicitly break Q but detPab effects dominate

Left: The breaking is soft — guaranteed to vanish as µ, κ −→ 0

Right: Soft Q breaking also suppressed ∝ 1/N2
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Backup: More on supersymmetric constraints

Improved action from arXiv:1505.03135
imposes Q-invariant plaquette determinant constraint

S =
N

2λlat
Q

(
χabFab + ↓ − 1

2
ηd

)
− N

8λlat
εabcde χabDc χde + µ2V

η

(
DaUa + G

∑
a 6=b

[detPab − 1] IN

)

Basic idea: Modify the equations of motion −→ moduli space

d(n) = DaUa(n) −→ DaUa(n) + G
∑
a 6=b

[detPab(n)− 1] IN

Produces much smaller QWard identity violations
that vanish ∝ (a/L)2 in the continuum limit
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Backup: Code performance—weak and strong scaling

Results from arXiv:1410.6971 to be revisited with improved action

Left: Strong scaling for U(2) and U(3) 163×32 RHMC

Right: Weak scaling for O(n3) pfaffian calculation (fixed local volume)
n ≡ 16N2L3NT is number of fermion degrees of freedom

Dashed lines are optimal scaling Solid line is power-law fit
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Backup: Numerical costs for 2, 3 and 4 colors
Results from arXiv:1410.6971 to be revisited with improved action

Red: RHMC cost scaling ∼N5 should now be better
thanks to recent optimizations (specific to adjoint fermions)

Blue: Pfaffian cost scaling consistent with expected N6
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Backup: N = 4 SYM static potential from Wilson loops

Extract static potential V (r) from r × T Wilson loops

W (r ,T ) ∝ e−V (r) T V (r) = A− C/r + σr

Coulomb gauge trick from lattice QCD provides off-axis loops
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Backup: Static potential is Coulombic at all λ

String tension σ from fits to confining form V (r) = A− C/r + σr

Slightly negative values make V (rI) flat for 3 . rI . 4

σ → 0 as accessible range of rI increases on larger volumes
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Backup: Perturbation theory for Coulomb coefficient

For range of couplings currently being studied
(continuum) perturbation theory for C(λ) is well behaved
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Backup: More tests of the static potential

Left: Projecting Wilson loops from U(N) −→ SU(N) =⇒ factor of N2−1
N2

Right: Unitarizing links removes scalars =⇒ factor of 1/2

Some results slightly above expected factors

May be related to fixed L = 8 or non-zero auxiliary couplings (µ,G)
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Backup: Real-space RG for lattice N = 4 SYM

Lattice RG blocking transformation must preserve symmetries
Q and S5 ←→ geometric structure of the system

Simple scheme constructed in arXiv:1408.7067

U ′c(x ′) = ξ Uc(x)Uc(x + µ̂c) η′(x ′) = η(x)

ψ′c(x
′) = ξ [ψc(x)Uc(x + µ̂c) + Uc(x)ψc(x + µ̂c)] etc.

Doubles lattice spacing a −→ a′ = 2a, with ξ a tunable rescaling factor

Scalar fields from polar decomposition Uc(n) = eϕc(n)Uc(n)
are shifted ϕc −→ ϕc + log ξ, since blocked Uc must remain unitary

Q-preserving RG blocking is necessary ingredient to derive that
at most one log. tuning needed to recover Qa and Qab in the continuum
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Backup: Scaling dimensions from Monte Carlo RG

Write system as (infinite) sum of operators, H =
∑

i ci Oi

with couplings ci that flow under RG blocking transformation Rb

n-times-blocked system is H(n) = RbH(n−1) =
∑

i c(n)
i O

(n)
i

Fixed point defined by H? = RbH? with couplings c?
i

Linear expansion around fixed point defines stability matrix T ?
ik

c(n)
i − c?

i =
∑

k

∂c(n)
i

∂c(n−1)
k

∣∣∣∣∣
H?

(
c(n−1)

k − c?
k

)
≡

∑
k

T ?
ik

(
c(n−1)

k − c?
k

)

Correlators of Oi , Ok −→ elements of stability matrix (Swendsen, 1979)

Eigenvalues of T ?
ik −→ scaling dimensions of corresponding operators
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Backup: Smearing for Konishi analyses
As in glueball analyses, use smearing to enlarge operator basis
Using APE-like smearing: (1− α) — + α

8
∑
u,

with staples built from unitary parts of links but no final unitarization
(unitarized smearing — e.g. stout — doesn’t affect scalar fields)

Average plaquette is stable upon smearing (right)
while minimum plaquette steadily increases (left)
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