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Motivation

A recent claim
M.R. Douglas, [JHEP 02 (2011) 011]

N. Lambert, C. Papageorgakis, M. Schmidt-Sommerfeld, [JHEP 01 (2011) 083]

6D (2, 0 ) superconformal theory = 5D MSYM

D = 5 MSYM captures all the degrees of freedom of the parent
6D theory =⇒ these two theories are the same
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Background

6D (2, 0) theory

Lagrangian not known!

Existence can be probed through dual gravitational theory
on AdS7 × S4

UV finite

Free energy ∼ N3

5D N = 2 theory

16 supercharges

Perturbatively non-renormalizable

Also takes part in AdS/CFT

Free energy ∼ N3 (at large ’t Hooft coupling)
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5D N = 2 Yang-Mills

Obtained by dimensional reduction of 6D (2, 0) theory on a
circle

Action

S5 =
1

g25

∫
d5x Tr

(1

4
FmnFmn +

1

2
DmφjDmφj +

1

4
[φj , φk]2

−iλaX(γm) b
a DmλbX − λ

aX
(γj) Y

X [φj , λaY ]
)

Euclidean Lorentz rotation group: SOE(5)

Internal rotation group: SOR(5)
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Twist - A Lattice Compatible Form

We are interested in formulating 5D theory on the lattice

Our approach: Twist the theory
E. Witten, [Commun. Math. Phys. 117, 353 (1988)]

Define a new rotation group

SO′(5) = diag subgroup
(
SOE(5)× SOR(5)

)
On flat space - just a change of variables

(On twisted 4D MSYM: See talks by Joel Giedt and David
Schaich [this session].)
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Twisted 5D N = 2 Yang-Mills

Twisted action

S5 =
1

g25

∫
d5x Tr

(1

4
FmnFmn +

1

2
DmφmDnφn

−iλAC
(γm) B

A DmλBC − λ
CA

(γm) B
A [φm, λCB]

)
5 scalars → vector field φm

Can combine with gauge field Am to form a complexified gauge
field Am

Theory has Am and Am

Complexified field strengths: Fmn and Fmn
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Twisted 5D N = 2 Yang-Mills

Fermions

λAB =
1

2
√

2

(1

2
(σmn)ABχmn + (γm)ABψm − εABη

)
η, ψm and χmn: p-forms (Grassmann odd)

Similar decomposition for twisted fields

Q,Qm,Qmn

Important property
Q2 · = 0

on the lattice
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Twisted Action

In terms of p-form fields

S5 =
1

g25

∫
d5x Tr

(1

4
FmnFmn −

1

8
[Dm,Dm]2

− iχmnDmψn − iψmDmη −
i

8
εmncdeχdeDcχmn

)
Can be written as a sum of Q-exact and Q-closed terms

S5 = QΛ− 1

g25

∫
d5x Tr

i

8
εmncdeχdeDcχmn,

Λ =
1

g25

∫
d5x Tr

( i
4
χmnFmn − ηDmφn −

1

2
ηd
)
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Twisted Action

Q transformations on twisted fields

QAm = ψm

Qψm = 0

QAm = 0

Qχmn = −iFmn

Qη = d

Qd = 0

d: auxiliary field

Exactly nilpotent: Q2 · = 0.
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On the Lattice

Straightforward. Use geometric discretization

Discretize theory on a hypercube.

Place p-form fields on p-cells of
hypercube

Site

Link

Face

Cube

µ̂1 = (1, 0, 0, 0, 0)

µ̂2 = (0, 1, 0, 0, 0)

µ̂3 = (0, 0, 1, 0, 0)

µ̂4 = (0, 0, 0, 1, 0)

µ̂5 = (0, 0, 0, 0, 1)

Note: We have only 16 fermions not 32, to fill the hypercube!
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Lattice Theory

Lattice covariant difference operators appropriate for p-forms
P. H. Damgaard and S. Matsuura, [JHEP 0707, 051 (2007)]

S. Catterall, [JHEP 0801, 048 (2008)]

D(+)
m f(n) = Um(n)f(n + µ̂m)− f(n)Um(n)

D(+)
m fn(n) = Um(n)fn(n + µ̂m)− fn(n)Um(n + µ̂n)

D(−)
m fm(n) = fm(n)Um(n)− Um(n− µ̂m)fm(n− µ̂m)

D(+)
c fmn(n) = fmn(n + µ̂c)Uc(n)− Uc(n + µ̂m + µ̂n)fmn(n)
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Lattice Theory

Q transformations on the lattice

QUm(n) = ψm(n)

Qψm(n) = 0

QUm(n) = 0

Qχmn(n) = −i
(
D(+)

m Un(n)
)

= −iFL
mn

Qη(n) = d(n)

Qd(n) = 0

Similar to the continuum transformations.
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Lattice Theory

Q-exact piece

SQ−exact = β
∑
n,m,n

Tr
[
− 1

4
FL

mn(n)Fmn(n)− 1

8

(
D(−)

m Um(n)
)2

−iχmn(n)D(+)
m ψn(n)− iη(n)D(−)

m ψm(n)
]

Gauge-invariant and local

Q-closed piece has to be modified

Open loop on the lattice. Need to close it.
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Lattice Theory

Introduce a path ordered link.

Option 1. Use U-fields

PPOL ≡
∏
l∈CL

U l

Action is Q-invariant, gauge-invariant but non-local.

Option 2. Use U-fields

PPOL ≡
∏
l∈CL

Ul

Action is Q non-invariant, gauge-invariant and local.

Need to introduce additional operator(
QPPOL

)
× (· · · )

to make it Q invariant
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Lattice Theory

Lattice action is: S = SQ−exact + SQ−closed

SQ−exact = β
∑
n,m,n

Tr
[
− 1

4
FL

mn(n)Fmn(n)− 1

8

(
D(−)

m Um(n)
)2

−iχmn(n)D(+)
m ψn(n)− iη(n)D(−)

m ψm(n)
]

SQ−closed = − iβ
8

∑
n,m,n,c,d,e

Tr εmncdePPOL

×χde(n + µ̂m + µ̂n + µ̂c)D
(+)
c χmn(n)

QS = 0, if we use Option 1. Additional operator needed for
Option 2.
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Lattice Theory

A well defined theory at finite lattice spacing

Can simulate at finite coupling and finite N

No doublers

Theory has naive continuum limit

How about quantum continuum limit?

Look for 2nd (or higher) order phase transitions
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Future Directions

Most pressing question:

Does it have a non-trivial UV fixed point on the lattice?

If so, it can give UV completion of the 5D theory and thus
a non-perturbative definition

One can check the scaling of free-energy on the lattice:
N3? (at all couplings?)

Validating gauge-gravity duality

Lots of interesting explorations to do...!

THANK YOU!
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