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Motivation
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- For calculating the static potential with a high resolution we have to work
with off axis separated quarks.

- e.g. matching the lattice QCD potential with the perturbative potential to
determine Aw;= in Fourier space. [F. Karbstein, A. Peters and M. Wagner, JHEP 1409, 114 (2014) [arXiv:1407.7503
MS

[hep-ph]]
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- For calculating the static potential with a high resolution we have to work
with off axis separated quarks.

- e.g. matching the lattice QCD potential with the perturbative potential to
determine /\W in FOU I’iel’ Space [F. Karbstein, A. Peters and M. Wagner, JHEP 1409, 114 (2014) [arXiv:1407.7503

[hep-ph]]

- The quantity of interest is the Wilson loop, which connects the two quarks
like a string.
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- To compute the spatial part of the Wilson loop one has to go over stair-like
paths through the lattice.
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- To compute the spatial part of the Wilson loop one has to go over stair-like
paths through the lattice.

- These stair-like paths are causing a big computational effort for a large
number of lattice points.
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- To compute the spatial part of the Wilson loop one has to go over stair-like
paths through the lattice.

O.

QO

- These stair-like paths are causing a big computational effort for a large
number of lattice points.

- ldea: Substitute the spatial part of the Wilson loop by an other object to
the calculation of
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The Technical Part
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- The spatial Wilson line is needed to ensure gauge invariance of the qg trial
state.
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- Transformation behavior required: U’(x,y) = G(x)U(x,y)G'(y)
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- The spatial Wilson line is needed to ensure gauge invariance of the qg trial
state.

- Transformation behavior required: U’(x,y) = G(x)U(x,y)G'(y)
- We explore an idea, which has been used in the context of Polyakov loops
and the static potential at finite temperature.

[O. Jahn and O. Philipsen, Phys. Rev. D 70, 074504 (2004) [hep-lat/0407042]]

[O. Philipsen, Phys. Lett. B 535, 138 (2002) [hep-lat/0203018]]
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- The spatial Wilson line is needed to ensure gauge invariance of the qg trial
state.

- Transformation behavior required: U’(x,y) = G(x)U(x,y)G'(y)

- We explore an idea, which has been used in the context of Polyakov loops
and the static potential at finite temperature.
[O. Jahn and O. Philipsen, Phys. Rev. D 70, 074504 (2004) [hep-lat/0407042]]

[O. Philipsen, Phys. Lett. B 535, 138 (2002) [hep-lat/0203018]]

- Consider the covariant lattice Laplace operator:

1
Af ?(UI(X a7y72)f(x_a7y7z)_2f(x)+Ul(vavZ)f(X+a7)/7Z))
1
5 (Ul(xy — a.2)f(x.y — a,2) = 20(x) + Ua(x,y, ) (x,y +2.2))
1
7

(UT(X y,z—a)f(x,y,z—a) —2f(x) + Us(x,y,z)f(x,y,z + a))
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- The spatial Wilson line is needed to ensure gauge invariance of the qg trial
state.

- Transformation behavior required: U’(x,y) = G(x)U(x,y)G'(y)

- We explore an idea, which has been used in the context of Polyakov loops
and the static potential at finite temperature.
[O. Jahn and O. Philipsen, Phys. Rev. D 70, 074504 (2004) [hep-lat/0407042]]

[O. Philipsen, Phys. Lett. B 535, 138 (2002) [hep-lat/0203018]]

- Consider the covariant lattice Laplace operator:

Af = (UI(X - 37Y7Z)f(x - a,y,z) - 2f(X) + Ul(vavZ)f(X + 87}/,2))

1
a2
1
5 (Ul(xy — a.2)f(x.y — a,2) = 20(x) + Ua(x,y, ) (x,y +2.2))
1
+? (U;f(x,y,z —a)f(x,y,z—a) — 2f(x) + Us(x,y,2)f(x,y,z + a))
- Transformation behavior: A’ = G(x)AGT(x)
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- Writing f(x) as a vector in position space A can be written as a matrix.
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- Writing f(x) as a vector in position space A can be written as a matrix.

- Consider f(x) is now an eigenvector of the covariant Laplace operator.

Af(x) = Af(x)

Tobias Neitzel [Computing the static potential using non-string-like tri July 25, 2016 7/20



- Writing f(x) as a vector in position space A can be written as a matrix.

- Consider f(x) is now an eigenvector of the covariant Laplace operator.

Af(x) = Af(x)
A'f'(x) = M (x)

- Apply an gauge transformation on the eigenvector-equation.
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- Writing f(x) as a vector in position space A can be written as a matrix.

- Consider f(x) is now an eigenvector of the covariant Laplace operator.

Af(x) = Af(x)
A'f'(x) = M (x)
G(x)AGT(X)f'(x) = Af'(X)

- Apply an gauge transformation on the eigenvector-equation.
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- Writing f(x) as a vector in position space A can be written as a matrix.
- Consider f(x) is now an eigenvector of the covariant Laplace operator.
Af(x = M (x)
'f'(x) = Af'(x)

)=

) =
G(x)AGT(x)f (x) = Af'(x)
AGT(x)f'(x) = AGT(x)f'(x)

- Apply an gauge transformation on the eigenvector-equation.
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- Writing f(x) as a vector in position space A can be written as a matrix.

- Consider f(x) is now an eigenvector of the covariant Laplace operator.

Af(x) = Af(x)

'f(x) = Af'(x)

G(x)AGT(x)f (x) = Af'(x)
AGT(x)f'(x) = AGT(x)f'(x)

- Apply an gauge transformation on the eigenvector-equation.

- We see: GT(x)f’(x) is again eigenvector to the covariant Laplace operator.
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- Now we know: f(x) and GT(x)f’(x) are members of the same eigenspace.
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- Now we know: f(x) and GT(x)f’(x) are members of the same eigenspace.

- In SU(3) the eigenvalues are in general nondegenerate. This means:

f(x)e = GT(x)f'(x)
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Now we know: f(x) and GT(x)f’(x) are members of the same eigenspace.

- In SU(3) the eigenvalues are in general nondegenerate. This means:

f(x)e = GT(x)f'(x)

- In SU(2) however, the eigenvalues are always two fold degenrate. This means:

afi(x) + Bh(x) = GT(x)f'(x)

Where f; and f, are an orthonormal basis of the corresponding eigenspace.
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Transformation law for SU(3): Transformation law for SU(2):
f(x)el® = GT(x)f'(x) afi(x) + Bh(x) = GT(x)f'(x)
Wilson Line: U'(x,y) = G(x)U(x,y)G(y)

- Now it is easy to create an object with the needed transformation behavior.
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Transformation law for SU(3): Transformation law for SU(2):
f(x)el® = GT(x)f'(x) afi(x) + Bh(x) = GT(x)f'(x)
Wilson Line: U'(x,y) = G(x)U(x,y)G(y)
SU(3) - Case: f'(x)f'T(y) = G(x)F(x)fT(y)GT(y)

- Now it is easy to create an object with the needed transformation behavior.
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Transformation law for SU(3): Transformation law for SU(2):
f(x)el® = GT(x)f'(x) afi(x) + Bh(x) = GT(x)f'(x)
Wilson Line: U'(x,y) = G(x)U(x,y)G(y)
SU(3) - Case: f'(x)f'T(y) = G(x)F(x)fT(y)GT(y)
2 2
SU) - Case: > FE () = 60 (D AE (1) 6T()
i=1 i=1

- Now it is easy to create an object with the needed transformation behavior.

- Where f; and f; are an orthonormal basis of the corresponding eigenspace.
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- We found objects with the required transformation behavior given by

f(x)ff(y) for SU(3) and _ilf,-(x)f,f(y) for SU(2).
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- We found objects with the required transformation behavior given by

f(x)ff(y) for SU(3) and _ilf,-(x)f,f(y) for SU(2).

- With these new objects it is not necessary to distinguish a certain path
between x and .
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- With these new objects it is not necessary to distinguish a certain path
between x and .

Advantages:
The computation of stair-like paths is not longer needed. J
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- We found objects with the required transformation behavior given by

f(x)ff(y) for SU(3) and _ilf,-(x)f,f(y) for SU(2).

- With these new objects it is not necessary to distinguish a certain path
between x and .

Advantages:
The computation of stair-like paths is not longer needed. J
Price to pay:
One has to compute the eigenvectors of A first. J
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Figure : Runtime of the eigenvector calculation and the remaining computations using

the new method
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Results
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Figure : Effective mass in units of the lattice spacing for the ordinary Wilson loop - using
100 basically independent SU(2) gaugelink configurations with 3 = 2.5 (= 0.089fm) on
a 24x24 Lattice
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Figure : Effective mass in units of the lattice spacing for the new method - using 100
basically independent SU(2) gaugelink configurations with 5 = 2.5 (= 0.089fm) on a

24x24 Lattice
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Figure : Comparison of the effective masses from the ordinary Wilson loop and the new
method - using 100 basically independent SU(2) gaugelink configurations with § = 2.5
(~ 0.089fm) on a 24x24 Lattice
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Figure : Potential for the static gg pair in units of the lattice spacing - using the ordinary
Wilson loop on 100 basically independent SU(2) gaugelink configurations with § = 2.5
(~ 0.089fm) on a 24x24 Lattice
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Figure : Potential for the static qg pair in units of the lattice spacing - using the new
method on 100 basically independent SU(2) gaugelink configurations with 3 = 2.5
(= 0.089fm) on a 24x24 Lattice
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Figure : Off-axis potential for the static gg pair in units of the lattice spacing - using the
new method on 100 basically independent SU(2) gaugelink configurations with 8 = 2.5
(= 0.089fm) on a 24x24 Lattice
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Figure : On-axis potential for the static qg pair in units of the lattice spacing - using the
new method on 60 basically independent SU(3) gaugelink configurations with 8 = 3.9 on
a 48x24 Lattice
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Summary

- In the ordinary approach the calculation of the static gg-potential, for off-axis
separations, requires the computation of time consuming stair-like paths.

- These stair-like paths come from the Wilson loop, an object that ensures
gauge invariance of the used qqg trial state.

- By using the we were able to
substitute the spatial part of the Wilson loop by a new object.

- . Fast computation times for off axis calculations and nearly
similar quality of the results (error bars).

- Possible application: The potential with fine resolution can be used for better
modeling and comparison with perturbative theories (Az;s-determination,
bb-spectrum).
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