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Motivation
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- For calculating the static potential with a high resolution we have to work
with off axis separated quarks.

- e.g. matching the lattice QCD potential with the perturbative potential to
determine ΛMS in Fourier space. [F. Karbstein, A. Peters and M. Wagner, JHEP 1409, 114 (2014) [arXiv:1407.7503

[hep-ph]]

- The quantity of interest is the Wilson loop, which connects the two quarks
like a string.
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- To compute the spatial part of the Wilson loop one has to go over stair-like
paths through the lattice.

- These stair-like paths are causing a big computational effort for a large
number of lattice points.

- Idea: Substitute the spatial part of the Wilson loop by an other object to
avoid the calculation of stair-like paths.
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The Technical Part
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- The spatial Wilson line is needed to ensure gauge invariance of the qq̄ trial
state.

- Transformation behavior required: U ′(x , y) = G (x)U(x , y)G †(y)

- We explore an idea, which has been used in the context of Polyakov loops
and the static potential at finite temperature.
[O. Jahn and O. Philipsen, Phys. Rev. D 70, 074504 (2004) [hep-lat/0407042]]

[O. Philipsen, Phys. Lett. B 535, 138 (2002) [hep-lat/0203018]]

- Consider the covariant lattice Laplace operator:

∆f =
1

a2

(
U†
1 (x − a, y , z)f (x − a, y , z) − 2f (x) + U1(x , y , z)f (x + a, y , z)

)
+

1

a2

(
U†
2 (x , y − a, z)f (x , y − a, z) − 2f (x) + U2(x , y , z)f (x , y + a, z)

)
+

1

a2

(
U†
3 (x , y , z − a)f (x , y , z − a) − 2f (x) + U3(x , y , z)f (x , y , z + a)

)

- Transformation behavior: ∆′ = G (x)∆G †(x)
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- Writing f (x) as a vector in position space ∆ can be written as a matrix.

- Consider f (x) is now an eigenvector of the covariant Laplace operator.

∆f (x) = λf (x)

∆′f ′(x) = λf ′(x)

G (x)∆G †(x)f ′(x) = λf ′(x)

∆G †(x)f ′(x) = λG †(x)f ′(x)

- Apply an gauge transformation on the eigenvector-equation.

- We see: G †(x)f ′(x) is again eigenvector to the covariant Laplace operator.
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- Now we know: f (x) and G †(x)f ′(x) are members of the same eigenspace.

- In SU(3) the eigenvalues are in general nondegenerate. This means:

f (x)e iφ = G †(x)f ′(x)

- In SU(2) however, the eigenvalues are always two fold degenrate. This means:

αf1(x) + βf2(x) = G †(x)f ′(x)

- Where f1 and f2 are an orthonormal basis of the corresponding eigenspace.
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Transformation law for SU(3): Transformation law for SU(2):

f (x)e iφ = G †(x)f ′(x) αf1(x) + βf2(x) = G †(x)f ′(x)

Wilson Line: U ′(x , y) = G (x)U(x , y)G †(y)

SU(3) - Case: f ′(x)f ′†(y) = G (x)f (x)f †(y)G †(y)

SU(2) - Case:
2∑

i=1

f ′i (x)f ′†i (y) = G (x)
( 2∑

i=1

fi (x)f †i (y)
)
G †(y)

- Now it is easy to create an object with the needed transformation behavior.

- Where f1 and f2 are an orthonormal basis of the corresponding eigenspace.
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- We found objects with the required transformation behavior given by

f (x)f †(y) for SU(3) and
2∑

i=1

fi (x)f †i (y) for SU(2).

- With these new objects it is not necessary to distinguish a certain path
between x and y.

Advantages:

The computation of stair-like paths is not longer needed.

Price to pay:

One has to compute the eigenvectors of ∆ first.
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Figure : Runtime of the eigenvector calculation and the remaining computations using
the new method
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Results
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Figure : Effective mass in units of the lattice spacing for the ordinary Wilson loop - using
100 basically independent SU(2) gaugelink configurations with β = 2.5 (≈ 0.089fm) on
a 24x24 Lattice
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Figure : Comparison of the effective masses from the ordinary Wilson loop and the new
method - using 100 basically independent SU(2) gaugelink configurations with β = 2.5
(≈ 0.089fm) on a 24x24 Lattice
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Figure : Potential for the static qq̄ pair in units of the lattice spacing - using the ordinary
Wilson loop on 100 basically independent SU(2) gaugelink configurations with β = 2.5
(≈ 0.089fm) on a 24x24 Lattice
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Figure : Off-axis potential for the static qq̄ pair in units of the lattice spacing - using the
new method on 100 basically independent SU(2) gaugelink configurations with β = 2.5
(≈ 0.089fm) on a 24x24 Lattice
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Figure : On-axis potential for the static qq̄ pair in units of the lattice spacing - using the
new method on 60 basically independent SU(3) gaugelink configurations with β = 3.9 on
a 48x24 Lattice
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Summary
- In the ordinary approach the calculation of the static qq̄-potential, for off-axis

separations, requires the computation of time consuming stair-like paths.

- These stair-like paths come from the Wilson loop, an object that ensures
gauge invariance of the used qq̄ trial state.

- By using the eigenvectors of the covariant Laplace operator we were able to
substitute the spatial part of the Wilson loop by a new object.

- Advantages: Fast computation times for off axis calculations and nearly
similar quality of the results (error bars).

- Possible application: The potential with fine resolution can be used for better
modeling and comparison with perturbative theories (ΛMS -determination,
bb̄-spectrum).

Tobias Neitzel Computing the static potential using non-string-like trial states July 25, 2016 20 / 20


	Motivation
	Technical Part
	Results
	Summary

