Charm-strange mesons and D K scattering

Christopher Thomas, University of Cambridge

c.e.thomas@damtp.cam.ac.uk

Lattice 2016, Southampton, 24 – 30 July 2016

Hadron Spectrum Collaboration

DK (I=0) scattering and charm-strange mesons

 $D K (I=0): J^{P} = 0^{+}, 1^{-}, 2^{+}, ...$

Isospin = 0 Strangeness = 1 Charm = 1

DK (I=0) scattering and charm-strange mesons

Same setup and techniques as previous talk

 m_{π} = 391 MeV, m_{K} = 549 MeV, m_{D} = 1890 MeV 2 volumes: 20³ x 128 and 24³ x 128 ($L \approx 2 - 3$ fm)

$$C_{ij}(t) = < 0 \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) 0 >$$

'single-meson ' $\sim ar{\psi} \Gamma D \dots \psi$

+ 'D K' operators $\mathcal{O}(\vec{P}) = \sum_{\hat{p}_1, \hat{p}_2} \mathcal{C}_{\Lambda}(\vec{P}, \vec{p}_1, \vec{p}_2) \mathcal{O}_D(\vec{p}_1) \mathcal{O}_K(\vec{p}_2)$

CT et al (HadSpec Collaboration) in preparation (these are preliminary results) [methods in PR D86, 034031; PR D87 034505; PRL 113, 182001; PR D91 054008]

DK (I=0) scattering and charm-strange mesons

Same setup and techniques as previous talk

 m_{π} = 391 MeV, m_{K} = 549 MeV, m_{D} = 1890 MeV 2 volumes: 20³ x 128 and 24³ x 128 ($L \approx 2 - 3$ fm)

$$C_{ij}(t) = < 0 \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) 0 >$$

'single-meson ' $\sim ar{\psi} \Gamma D \dots \psi$

+ 'D K' operators $\mathcal{O}(\vec{P}) = \sum_{\hat{p}_1, \hat{p}_2} \mathcal{C}_{\Lambda}(\vec{P}, \vec{p}_1, \vec{p}_2) \mathcal{O}_D(\vec{p}_1) \mathcal{O}_K(\vec{p}_2)$

CT *et al* (HadSpec Collaboration) in preparation (these are preliminary results) [methods in PR D86, 034031; PR D87 034505; PRL 113, 182001; PR D91 054008]

Some previous lattice QCD studies:

- Mohler et al [PRL 111, 222001 (2013)] 0⁺ D_s(2317) below D K threshold
- Lang et al [PRD 90, 034510 (2014)] 0⁺ D_s (2317) and 1⁺ D_{s1} (2460), D_{s1} (2536)

 $\mathsf{J}^\mathsf{P} = \mathsf{0}^+, \, \mathsf{4}^+, \, \dots \, [\boldsymbol{\ell} = \mathsf{0}, \, \mathsf{4}, \, \dots]$

 $\mathsf{J}^\mathsf{P} = \mathsf{0}^+, \, \mathsf{4}^+, \, \dots \, [\boldsymbol{\ell} = \mathsf{0}, \, \mathsf{4}, \, \dots]$

 $P = [0,0,0] T_1^{-1}$

$$J^{P} = 1^{-}, 3^{-}, (4^{-}), \dots [\ell = 1, 3, \dots]$$

$$|\lambda| = 0^+, 4, \dots$$
 [$\ell = 0, 1, 2, 3, 4^2, \dots$]

DK (I=0) scattering

Lüscher method \rightarrow scattering phase shifts δ (elastic *DK* scattering)

Various different:

- parameterizations of the scattering *t*-matrix (effective range, Breit-Wigner, various *K*-matrix params.)
- sets of energy levels across relevant irreps on two vols. (up to 34 levels)

Consider only $\ell = 0, 1$ (can also look at $\ell = 2$)

DK (I=0): S-wave

 $P = [0,0,0] A_1^+$

DK (I=0): S and P-waves

DK (I=0): S-wave amp.

DK (I=0): S-wave pole

Pole in *t*-matrix on real axis (physical sheet): $a_t m \approx 0.420 \rightarrow m \approx 2380 \text{ MeV}$ Bound state, below *DK* threshold: $a_t \Delta m \approx 0.010 \rightarrow \Delta m \approx 55 \text{ MeV}$

C.f. experimentally for $D_s(2317)$: $\Delta m \approx 40-50$ MeV

DK (I=0) c.f. $D\pi$ (I=½) S-wave

DK (I=0) c.f. D π (I=½) S-wave

DK (I=0): P-wave amp.

DK (I=0): P-wave amp.

DR (I=1) scattering

DĀ (I=1): J^P = 0⁺, 1⁻, 2⁺, ...

Isospin = 1 Strangeness = -1 Charm = 1

Flavour exotic $c\bar{l}s\bar{l}$

 $C_{ij}(t) = < 0 \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) 0 >$

'DK' operators

DR (I=1) spectra

 $J^{P} = 0^{+}, 4^{+}, \dots [\ell = 0, 4, \dots]$

DR (I=1): S-wave only

Summary and outlook

Summary

- Many energy levels → map out phase shifts
- Charm-strange mesons near D K threshold:
 0⁺ bound state [c.f. D_{s0}(2317)], 1⁻ very bound, also narrow 2⁺ resonance ≈ 2580 MeV [c.f. D_{s2}(2573)]
- C.f. D π talk by Graham Moir
- HadSpec Collab. work in light sector talks by David Wilson, Antoni Woss, Raul Briceno, Jo Dudek

Outlook

- Many other interesting (coupled-) channels
- Evolution of phenomena as vary pion mass?
- Transitions