Effective action for pions and a dilatonic meson — results

Maarten Golterman

San Francisco State University

MG, Yigal Shamir, arXiv:1603.04575

Lattice 2016, Southampton, July 25, 2016

Effective theory for pions and a dilatonic meson: ingredients

Consider $SU(N_c)$ gauge theory with $N_f \equiv n_f N_c$ fundamental fermions close to conformal window with degenerate quark mass m

- ullet for fixed n_f theory is function of g^2N_c and n_f in $N_c o \infty$ (Veneziano) limit
- n_f^* conformal sill: $n_f < n_f^*$ ChSB ; $n_f > n_f^*$ IRFP assume:

 $T_{an} \sim n_f - n_f^*$ near ChSB scale $(T_{an} \text{ is trace anomaly in chiral limit})$

- $m \ll \Lambda \Rightarrow$ approximate chiral symmetry, light pions $n_f \lesssim n_f^* \Rightarrow$ approximate scale symmetry, light dilatonic meson
- \Rightarrow power counting in m, p^2 , $n_f-n_f^*$ (and $1/N_c\sim 1/N_f$) and systematic EFT for pions and light dilatonic meson (Yigal's talk)

Leading order lagrangian:

(Yigal's talk)

$$\mathcal{L} = \mathcal{L}_{\pi} + \mathcal{L}_{\tau} + \mathcal{L}_{m} + \mathcal{L}_{d}$$

$$\mathcal{L}_{\pi} = (f_{\pi}^{2}/4) e^{2\tau} \operatorname{tr} (\partial_{\mu} \Sigma^{\dagger} \partial_{\mu} \Sigma)$$

$$\mathcal{L}_{\tau} = (f_{\tau}^{2}/2) e^{2\tau} (\partial_{\mu} \tau)^{2}$$

$$\mathcal{L}_{m} = -(m f_{\pi}^{2} B_{\pi}/2) e^{y\tau} \operatorname{tr} \left(\Sigma + \Sigma^{\dagger}\right)$$

$$\mathcal{L}_{d} = \left[\tilde{c}_{00} + (n_{f} - n_{f}^{*})(\tilde{c}_{01} + \tilde{c}_{11}\tau)\right] f_{\tau}^{2} B_{\tau} e^{4\tau}$$

- pion field $\Sigma=\exp(2i\pi/f_\pi)\to g_L\Sigma g_R^\dagger$ and dilat. meson field $\tau\to \tau+\log\lambda$
- use au shift and redefine LECs to get $\mathcal{L}_d = \tilde{c}_{11} (n_f n_f^*) (\tau 1/4) \, \hat{f}_{ au}^2 \hat{B}_{ au} \, e^{4 au}$
- $\bullet \chi = {
 m renormalized \ source}, \quad m = {
 m renormalized \ mass}$
- $\Rightarrow y=3-\gamma_m^*$ with γ_m^* the IRFP value of the mass anomalous dimension at the sill of the conformal window
- ullet corrections are accounted for by expansion in $n_f-n_f^*$

Classical vacuum in the chiral limit

- Dilatonic meson potential: $V_{\rm cl}(\tau) \propto V_{d}(\tau) e^{4\tau} = \tilde{c}_{11}(n_f n_f^*)(\tau 1/4) \, e^{4\tau}$
- ullet Self-consistency: $ilde{c}_{11} < 0$ (recall $n_f < n_f^*$) $\Rightarrow V_{
 m cl}(au)$ bounded from below
- Effective theory at leading order seems "almost" scale invariant
- But: linear term in $V_d(\tau)$ is crucial; reflects <u>hard</u> breaking of scale invariance!
- Going to $n_f > n_f^*$, classical potential becomes unbounded from below
- ⇒ EFT "knows" it cannot be used inside conformal window where no pions exist!

Tree-level masses

- $\underline{m=0}$: shifted classical vacuum: $v=\langle \tau \rangle=0$
- dilatonic meson mass: $m_{\tau}^2 = 4\tilde{c}_{11}(n_f n_f^*)\hat{B}_{\tau}$ $(\hat{B}_{\tau} = e^{2v[\text{pre-shift}]}B_{\tau})$
- $\underline{m} > 0$: $V_{\rm cl}(\tau) = V_d(\tau) e^{4\tau} \frac{m}{\mathcal{M}} e^{y\tau} \Rightarrow v(m)$ increases monotonically with m
- dilatonic meson: $m_{\tau}^2 = 4\tilde{c}_{11}(n_f n_f^*)\hat{B}_{\tau}e^{2v(m)}(1 + (4 y)v(m))$
- pion: $m_\pi^2 = 2\hat{B}_\pi m e^{(y-2)v(m)}$, increase with m faster than ordinary ChPT

Varying n_f towards n_f^* :

• condensate enhancement for $\tilde{c}_{00} > 0^{\star}$

$$\frac{\left\langle \overline{\psi}\psi\right\rangle}{\hat{f}_{\pi}^{3}} = -\frac{B_{\pi}}{f_{\pi}} \exp\left[\gamma_{m}^{*} \left(\frac{1}{4} + \frac{\tilde{c}_{00}}{\tilde{c}_{11}(n_{f} - n_{f}^{*})}\right)\right]$$

* "gauge choice" $\tilde{c}_{01} = 0 \Rightarrow V_{\rm cl} = [\tilde{c}_{00} + (n_f - n_f^*)\tilde{c}_{11}\tau] f_{\tau}^2 B_{\tau} e^{4\tau}$

Matching the trace anomaly

• dilatation current: $S_{\mu} = x_{\nu}\Theta_{\mu\nu} = x_{\nu}(T_{\mu\nu} + K_{\mu\nu}/3)$ $\langle 0|\Theta_{\mu\nu}(x)|\tau\rangle = \frac{\hat{f}_{\tau}}{3}(-\delta_{\mu\nu}p^2 + p_{\mu}p_{\nu})\,e^{ipx}$ $\langle 0|S_{\mu}(x)|\tau\rangle = ip_{\mu}\hat{f}_{\tau}\,e^{ipx}$

anomalous divergence shows up at leading order in EFT:

$$\partial_{\mu}S_{\mu} = \tilde{c}_{11}(n_f - n_f^*)f_{\tau}^2 B_{\tau} e^{4\tau} + (1 + \gamma_m^*) \frac{f_{\pi}^2 B_{\pi} m}{2} e^{y\tau} \operatorname{tr} \left(\Sigma + \Sigma^{\dagger}\right)$$
$$= -\frac{\beta(g^2)}{4g^2} F^2(\text{EFT}) - (1 + \gamma_m^*) m \, \overline{\psi} \psi(\text{EFT})$$

- GMOR relation when $m \ll |n_f n_f^*|$: $-(2m/N_f) \langle \overline{\psi}\psi \rangle = \hat{f}_\pi^2 m_\pi^2$
- GMOR-like relation for dilatonic meson: $-(\beta(g^2)/g^2) \langle F^2 \rangle = \hat{f}_{\tau}^2 m_{\tau}^2$ (works since $\Gamma_{\tau}/m_{\tau} \sim |n_f n_f^*|$)

Next-leading order and one loop renormalization

Examples of various types of NLO operators

- usual ChPT
$$e^{4\tau}\operatorname{tr}\left(e^{-\tau}\partial_{\mu}\Sigma^{\dagger}\,e^{-\tau}\partial_{\mu}\Sigma\right)\operatorname{tr}\left(e^{(y-4)\tau}\chi^{\dagger}\Sigma+\Sigma^{\dagger}e^{(y-4)\tau}\chi\right)$$
- LO potentials
$$[\tilde{c}_{02}+\tilde{c}_{12}\tau+\tilde{c}_{22}(\tau^2/2)](n_f-n_f^*)^2f_{\tau}^2B_{\tau}\,e^{4\tau}$$
- pure dilatonic derivative terms
$$[(\partial_{\mu}\tau)^2]^2,\; (\Box\tau)^2,\; \Box\tau(\partial_{\mu}\tau)^2$$
- mixed
$$e^{(y-2)\tau}\,(\partial_{\mu}\tau)^2\operatorname{tr}\left(\chi^{\dagger}\Sigma+\Sigma^{\dagger}\chi\right)$$

One-loop effective potential from dilatonic meson loop

$$V_{\text{cl}}(\tau) = f_{\tau}^{2} B_{\tau} V_{d}(\tau) e^{4\tau} - \frac{f_{\pi}^{2} B_{\pi}}{2} e^{y\tau} \operatorname{tr} \left(\chi^{\dagger} \Sigma + \Sigma^{\dagger} \chi \right)$$

$$V_{\text{eff, dil.}}^{(1)} = -\frac{1}{64\pi^{2}} \left(e^{-2\tau} V_{\text{cl}}''(\tau) \right)^{2}$$

$$\times \left(\frac{2}{4-d} - \gamma + \frac{3}{2} - \log \left(\frac{e^{-2\tau} V_{\text{cl}}''(\tau)}{4\pi\mu^{2}} \right) + O(d-4) \right)$$

⇒ divergence expandable in NLO operators

Summary

- Main assumption: $T_{an} \sim (n_f n_f^*)^\eta$ at the onset of ChSB
- Crude model (2-loop + gap equation): $\beta(g_c^2) \propto n_f n_f^* = n_f 4$
- Can be extracted from e.g. $\frac{\left\langle T_{an}(0) \left[F^2 \right](x) \right\rangle_c}{\left\langle \left[F^2 \right](0) \left[F^2 \right](x) \right\rangle_c}$
- Obtain (by necessity) n_f^* and η like other LECs, by fitting data at varying N_c and N_f to EFT. But: predictions for masses at fixed N_c and N_f
- ullet For two-index (and higher) irreps, asymptotic freedom forbids $N_f o \infty$
- Can try the EFT anyway, for fixed model (fixed N_c and fermion content) Being lucky: given $V_I = \sum c_n (\tau \sigma)^n$ if, empirically, $c_0 \gg c_1 \gg c_2 \cdots$ Can be interpreted as having $non\text{-}integer\ N_f^*$ close to (and above) an integer

Back-up: Yigal's talk

A light flavor-singlet scalar — the Higgs particle?

• $SU(3), N_f = 8$ fund. [LatKMI, LSD,...]

Consistent low-energy theory must contain both pions and the flavor-singlet scalar

LSD collaboration, PRD 93 (2016) 114514

• $SU(3), N_f = 2$ sextet [Fodor et al.]

Phases of $SU(N_c)$ with N_f fundamental-rep Dirac fermions

ullet running slows down when N_f is increased

$$\frac{\partial g^2}{\partial \log \mu} = -\frac{b_1}{16\pi^2} g^4 - \frac{b_2}{(16\pi^2)^2} g^6$$

- two-loop IRFP g_*^2 develops when $b_1>0>b_2$
- "Walking" gap equation \Rightarrow ChSB when $g^2(\mu)=g_c^2=rac{4\pi^2}{3C_2}$
- SU(3), fund. rep: $g_c^2=\pi^2\simeq 9.87$
- chirally broken if $g_c < g_*(N_f)$
- conformal (IRFP) if $g_c > g_*(N_f)$

• sill of conformal window: $g_*(N_f^*) = g_c$ (note: N_f^* not an integer)

Pseudo Nambu-Goldstone boson of approx dilatation symmetry?

- dilatations: $\Phi_i(x) \to \lambda^{\Delta_i} \Phi_i(\lambda x)$, Δ_i scaling dimension of field $\Phi_i(x)$
- dilatation current: $S_{\mu} = x_{\nu} T_{\mu\nu}$ classically conserved for m=0
- ullet probe beta fn at the ChSB scale: $\left\langle T_{an}(0)\left[F^2\right](x)\right\rangle_c/\left\langle [F^2](0)\left[F^2\right](x)\right\rangle_c$
- below conformal sill: $\beta(g_c^2) \propto N_f N_f^*$ expect: increasing N_f towards $N_f^* \Rightarrow$ smaller $\beta(g_c)$ at ChSB scale \Rightarrow better scale invariance \Rightarrow "dilatonic" pNG boson gets lighter
- Q: use $N_f N_f^*$ as small parameter? (problem: N_f takes discrete values)

Low-energy EFT with dilatonic meson: power counting

- ullet standard ChPT: fermion mass m is a parameter of the microscopic theory m can be tuned continuously towards zero
- \Rightarrow Systematic expansion in m and p^2
- ullet problem: cannot turn off trace anomaly; theory is defined at fixed N_c,N_f
- ullet analogy: cannot turn off $U(1)_A$ anomaly; but it becomes vanishingly small for $N_c o \infty$
- \Rightarrow Systematic expansion in m, $1/N_c$, and p^2

[Kaiser and Leutwyler, '00]

- Veneziano limit: $N_f, N_c \to \infty$ with $n_f = N_f/N_c$ fixed n_f becomes a continuous parameter; theory depends only on g^2N_c and n_f $n_f^* = \lim_{N_c \to \infty} N_f^*(N_c)/N_c = \text{sill of conformal window for } N_c \to \infty.$
- <u>assume:</u> $T_{an} \sim (n_f n_f^*)^{\eta}$ at the ChSB scale $[\eta = 1 \text{ in this talk}]$
- \Rightarrow Systematic expansion in m, 1/N, $n_f-n_f^*$, and p^2

Constructing an Effective Field Theory

Microscopic theory:

- symmetries
- spurions: external fields transforming under the symmetries
- fixing "VEVs" of spurions \Rightarrow explicit breaking of symmetries

Effective theory:

- same symmetries, same spurion fields, but new dynamical (effective) fields
- explicit breaking of symmetries from same VEVs of spurions
- power counting (previous slide)
- ullet use spurions as probes \Rightarrow fix Low Energy Constants order by order, by matching correlators obtained by differentiation with respect to spurion fields

Spurions in the microscopic theory

• chiral symmetry: $\mathcal{L}^{\mathrm{MIC}}(\chi) = \frac{1}{4}F^2 + \overline{\psi}D\psi + \overline{\psi}_R\chi^\dagger\psi_L + \overline{\psi}_L\chi\psi_R$

$$\delta \mathcal{L}^{\mathrm{MIC}}(\chi) = 0$$
 , but: $\langle \chi \rangle = m \implies \delta \mathcal{L}^{\mathrm{MIC}}(m) = m \delta(\overline{\psi}\psi)$

• axial $U(1)_A$ symmetry: $\mathcal{L}^{\mathrm{MIC}}(\theta) = \frac{1}{4}F^2 + \overline{\psi}D\psi + \theta icg^2F\tilde{F}$

$$\delta\theta = 1 \implies \delta\mathcal{L}^{\mathrm{MIC}}(\theta) = 0$$
 (finite $U(1)_A$ transf: $\theta \to \theta + \alpha$)

but:
$$\langle \theta \rangle = \theta_0 \implies \delta \mathcal{L}^{\mathrm{MIC}}(\theta_0) = -icg^2 F \tilde{F}$$

• dilatations: $\mathcal{L}^{\mathrm{MIC}}(\sigma,\chi) = \mathcal{L}^{\mathrm{MIC}}(0,\chi) + \sigma T_{an}(\chi) + \cdots$

$$\delta \sigma = x_{\mu} \partial_{\mu} \sigma + 1 \implies \delta \mathcal{L}^{\text{MIC}}(\sigma, \chi) = x_{\mu} \partial_{\mu} \mathcal{L}^{\text{MIC}}(\sigma, \chi)$$

but:
$$\langle \sigma \rangle = 0 \implies \delta \mathcal{L}^{\mathrm{MIC}}(0, \chi) = x_{\mu} \partial_{\mu} \mathcal{L}^{\mathrm{MIC}}(0, \chi) - T_{an}(\chi)$$

Effective Field Theory with pions and dilatonic meson $\tau(x)$

• dilatation transformation [finite]:

source fields:
$$\sigma(x) \to \sigma(\lambda x) + \log \lambda$$
, $\chi(x) \to \lambda^{4-y} \chi(\lambda x)$ effective fields: $\tau(x) \to \tau(\lambda x) + \log \lambda$, $\Sigma(x) \to \Sigma(\lambda x)$

ullet invariant low-energy theory: $ilde{\mathcal{L}}^{\mathrm{EFT}} = ilde{\mathcal{L}}_{\pi} + ilde{\mathcal{L}}_{ au} + ilde{\mathcal{L}}_{m} + ilde{\mathcal{L}}_{d}$ where

$$\tilde{\mathcal{L}}_{\pi} = V_{\pi}(\tau - \sigma) \left(f_{\pi}^{2}/4 \right) e^{2\tau} \operatorname{tr} \left(\partial_{\mu} \Sigma^{\dagger} \partial_{\mu} \Sigma \right)
\tilde{\mathcal{L}}_{\tau} = V_{\tau}(\tau - \sigma) \left(f_{\tau}^{2}/2 \right) e^{2\tau} (\partial_{\mu} \tau)^{2}
\tilde{\mathcal{L}}_{m} = -V_{M}(\tau - \sigma) \left(f_{\pi}^{2} B_{\pi}/2 \right) e^{y\tau} \operatorname{tr} \left(\chi^{\dagger} \Sigma + \Sigma^{\dagger} \chi \right)
\tilde{\mathcal{L}}_{d} = V_{d}(\tau - \sigma) f_{\tau}^{2} B_{\tau} e^{4\tau}$$

with invariant potentials: $V(\tau(x) - \sigma(x)) \rightarrow V(\tau(\lambda x) - \sigma(\lambda x))$

⇒ No predictability without power counting!

Power counting hierarchy from matching correlation functions

• recall microscopic theory $\mathcal{L}^{\mathrm{MIC}}(\sigma,\chi) = \mathcal{L}^{\mathrm{MIC}}(0,\chi) + \sigma T_{an}(\chi) + O(\sigma^2)$

$$\left. \frac{\partial}{\partial \sigma(x)} \mathcal{L}^{\text{MIC}} \right|_{\sigma = \chi = 0} = \left. T_{an}(x) \right|_{\chi = 0} = \left. \frac{\beta(g^2)}{4g^2} [F^2(x)] \sim n_f - n_f^* \right.$$

effective theory

$$\left(-\frac{\partial}{\partial \sigma(x)}\right)^{n} \tilde{\mathcal{L}}^{EFT}\Big|_{\sigma=\chi=0} = V_{d}^{(n)}(\tau(x)) f_{\tau}^{2} B_{\tau} e^{4\tau(x)} + \cdots$$

$$\Rightarrow$$
 $V(\tau - \sigma) = \sum_{n=0}^{\infty} c_n (\tau - \sigma)^n$ where $c_n = O((n_f - n_f^*)^n)$

⇒ Only a finite number of LECs at each order!

Matching - role of non-coinciding points

- Cyan: points at asympt. large distances

• Upshot:

$$V(\tau - \sigma) = \sum_{n=0}^{\infty} (\tau - \sigma)^n \sum_{k \geq n} \tilde{c}_{nk} (n_f - n_f^*)^k$$

Leading order lagrangian, finally:

• now set $\sigma(x)=0$, obtaining at order $m\sim n_f-n_f^*\sim p^2$:

$$\mathcal{L} = \mathcal{L}_{\pi} + \mathcal{L}_{\tau} + \mathcal{L}_{m} + \mathcal{L}_{d}$$

$$\mathcal{L}_{\pi} = (f_{\pi}^{2}/4) e^{2\tau} \operatorname{tr} (\partial_{\mu} \Sigma^{\dagger} \partial_{\mu} \Sigma)$$

$$\mathcal{L}_{\tau} = (f_{\tau}^{2}/2) e^{2\tau} (\partial_{\mu} \tau)^{2}$$

$$\mathcal{L}_{m} = -(m f_{\pi}^{2} B_{\pi}/2) e^{y\tau} \operatorname{tr} \left(\Sigma + \Sigma^{\dagger}\right)$$

$$\mathcal{L}_{d} = \left[\tilde{c}_{00} + (n_{f} - n_{f}^{*})(\tilde{c}_{01} + \tilde{c}_{11}\tau)\right] f_{\tau}^{2} B_{\tau} e^{4\tau}$$