Effective action for pions and a dilatonic meson — results

Maarten Golterman

San Francisco State University

MG, Yigal Shamir, arXiv:1603.04575

Lattice 2016, Southampton, July 25, 2016



Effective theory for pions and a dilatonic meson: ingredients

Consider SU(N.) gauge theory with Ny = nyN. fundamental fermions close
to conformal window with degenerate quark mass m

e for fixed ns theory is function of >N, and ns in N, — oo (Veneziano) limit

° n}i conformal sill: n, < n}i ChSB ; ny > n;‘c IRFP
assume:
Toan ~ ng —n% near ChSB scale (Ty,, is trace anomaly in chiral limit)

e m < A = approximate chiral symmetry, light pions
n ¢ Sn}i = approximate scale symmetry, light dilatonic meson

= power counting in m, p*, ny —n% (and 1/N, ~ 1/Ny)
and systematic EFT for pions and light dilatonic meson (Yigal's talk)




Leading order lagrangian: (Yigal's talk)
L = L.+L,+L,,+ Ly
L. = (f3/4)e*tr(0,219,%)
Ly = (f7/2) € (Ou)?
Loy = —(mf2B,/2) e tr (z + o )

Lg = [600 + (nf — n}i)(ém + 6117')] fEBT et

e pion field ¥ = exp(2in/fr) — gLEg;r{ and dilat. meson field 7 — 7 + log A
e use 7 shift and redefine LECs to get L4 = c11(ny —n})(7 —1/4) 2B, e

e \ = renormalized source, m = renormalized mass

= y =3 —7,, with 77 the IRFP value of the mass anomalous dimension at
the sill of the conformal window

e corrections are accounted for by expansion in ny —n}



Classical vacuum in the chiral limit

e Dilatonic meson potential: Vei(7) o< Vy(7)e*™ = é11(ny — n})(m — 1/4) e*”
o Self-consistency: ¢11 <0 (recall ny <n%) = Vu(7) bounded from below

e Effective theory at leading order
seems “almost” scale invariant
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e But: linear term in Vy(7) is crucial; ] ]
reflects hard breaking of scale invariance! [ ]
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e Going to ny > nF, classical potential
becomes unbounded from below 0.5 — —
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Tree-level masses

e m = 0: shifted classical vacuum: v = (1) =0

A

e dilatonic meson mass: m2 = 4¢éy1(ny —n’)B; (B, = e2vlpre—shifti gy

3

> 0: Va(r) = Va(r) e*” — & ¥ = v(m) increases monotonically with m

e dilatonic meson: m?2 = 4¢y1(ny — n}i)f%e%(m)(l + (4 —y)v(m))

e pion: m72T = 2B7Tme(y_2)”(m), increase with m faster than ordinary ChPT
Varying ny towards n:

e condensate enhancement for ¢y > 0*

() _ bBx « (1 €00
ﬁ? N fﬂ- =P Tm 4 i Ell(nf — n})

* “gauge choice” ¢o1 =0 = Vo = [Coo + (nf — n}i)élﬁ] f?B,e
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Matching the trace anomaly

e dilatation current: S, =2,0,, =z, (T, + K, /3)

fT 1DPIT
0]Ou(z)|T) = E(—CSWPZ + pupy) e’
(0] Su(z) |7) = ipufre™”

e anomalous divergence shows up at leading order in EFT:

2
B
0uS = Enalng — ) f2Bet™ + (14 7) Z0 vt (31 4 50
2
—ﬁijz) F2(EFT) — (1 4+~ )myyp(EFT)
e GMOR relation when m < |ny — nj|: —(2m/Ny) () = f2m?2

e GMOR:-like relation for dilatonic meson:  —(3(¢%)/g%) (F?) = fZm?
(works since  I'z/m. ~ |ny —n%|)



Next-leading order and one loop renormalization

e Examples of various types of NLO operators
— usual ChPT et tr (e_T(?H XTe 7o, E) tr (6<y—4)TXT >+ ETe(y_4)Tx)
— LO potentials [502 + C19T + 522(72/2)](71]0 — TL}'Z)ZJLEBT ed™
— pure dilatonic derivative terms  [(9,7)%]?, (O7)%, O7(0,7)*

— mixed eI (9,17 tr (XS + ZTy)

e One-loop effective potential from dilatonic meson loop
2B,

Va(r) = fZBVa(r)e

1 —2T
_647T2 (6 ’ C/l/(T))

9 ( L 2 log (e_ZTVC’f(T)) +O(d- 4))

eV tr (XTE — ETx)

2

1
Vig) ain

41—d "2 A2
—> divergence expandable in NLO operators



Summary

e Main assumption: Ty, ~ (ny —n%)" at the onset of ChSB

e Crude model (2-loop + gap equation):  3(gZ) occ ny —nj = ny — 4

<Tan(0) [F2] (37)>C
(L£2](0) [£7%](2))..

e Can be extracted from e.g.

e Obtain (by necessity) n’} and 7 like other LECs, by fitting data
at varying N, and N, to EFT. But: predictions for masses at fixed N, and N;

e For two-index (and higher) irreps, asymptotic freedom forbids Ny — oo

e Can try the EFT anyway, for fixed model (fixed N, and fermion content)
Being lucky: given V; = > ¢, (7 — o)™ if, empirically, co > c1 > co---
Can be interpreted as having non-integer N} close to (and above) an integer



Back-up: Yigal's talk



A light flavor-singlet scalar — the Higgs particle?

e SU(3), Ny = 8 fund. [LatkKMI, LSD,. ]
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e SU(3), Ny = 2 sextet [Fodor et al |

LSD collaboration, PRD 93 (2016) 114514

Consistent low-energy
theory must contain
both pions and the
flavor-singlet scalar



Phases of SU(N.) with N fundamental-rep Dirac fermions

e running slows down when N is increased

892 _ bl 4 bg g6

dlog “16m2Y T (1672)2

e two-loop IRFP g2 develops when
by >0 > by

e “Walking” gap equation =
472

3C,
e SU(3), fund. rep: g2 = 7% ~ 9.87

ChSB when ¢%(p) = g2 =

e chirally broken if g. < g.(Ny¢)

e conformal (IRFP) if g. > g.(Ny)

o sill of conformal window: g.(N}) = g. (note
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o 10

g2

. N7 not an integer)
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Pseudo Nambu-Goldstone boson of approx dilatation symmetry?

e dilatations:  ®;(z) — A2 ®;(\x), A, scaling dimension of field ®;(x)

e dilatation current: S, = x,1,,, classically conserved for m = 0

e non-conservation: 0,5, = Ty = =Ty —"Tun
Tcl — m[@zﬁ]
B(g° -
Tun = i§2)[F2]+7mm[¢¢]

e probe beta fn at the ChSB scale: (Tun(0) [F?](z))_ / ([F?](0) [F?](z))

C

e below conformal sill:  3(gZ) oc Ny — N;
expect: increasing Ny towards Ni = smaller 3(g.) at ChSB scale
—> better scale invariance = “dilatonic” pNG boson gets lighter

e Q: use Ny — N} as small parameter? (problem: Ny takes discrete values)
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Low-energy EFT with dilatonic meson: power counting

e standard ChPT: fermion mass m is a parameter of the microscopic theory
m can be tuned continuously towards zero
—> Systematic expansion in m and p?

e problem: cannot turn off trace anomaly; theory is defined at fixed N., N¢

e analogy: cannot turn off U(1)4 anomaly;
but it becomes vanishingly small for N, — oo
—> Systematic expansion in m, 1/N,, and p? [Kaiser and Leutwyler, '00]

e Veneziano limit: Ny, N. — oo with ny = N¢/N, fixed
ns becomes a continuous parameter; theory depends only on g*N, and ny
ny = limy, oo N}k(NC)/NC = sill of conformal window for N, — 0.

o assume: Ty ~ (ny —n})" at the ChSB scale [7 = 1 in this talk]

= Systematic expansion in m, 1/N, ny —n%, and p
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Constructing an Effective Field Theory

Microscopic theory:
e symmetries
e spurions: external fields transforming under the symmetries

e fixing “VEVs" of spurions = explicit breaking of symmetries

Effective theory:

e same symmetries, same spurion fields, but new dynamical (effective) fields
e explicit breaking of symmetries from same VEVs of spurions

e power counting (previous slide)

e use spurions as probes = fix Low Energy Constants order by order, by
matching correlators obtained by differentiation with respect to spurion fields
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Spurions in the microscopic theory

e chiral symmetry: LMIC(y) = in + VPY + YpxUL + Y xUR

SLMC() =0, but: (\)=m = LMC(m) =mdi(Yy)

o axial U(1) 4 symmetry: LMC(0) = 1F2 + Doy + Picg?’ FF
60=1 = 6LMC0) =0 (finite U(1) 4 transf: 6 — 0 + )

but:  (8) =0y = 6LMIC(Gy) = —icg?FF

e dilatations: LMIC(g, v) = LMC(0, v) + 0T pn () + - -
oo =x,0,0+1 = SLMC (o ) = z,0, £MIC(J, X)

but: (o) =0 = SLMIC(0, \) = 2,0, LMC(0, \) — Tun(x)

14



Effective Field Theory with pions and dilatonic meson 7(z)

e dilatation transformation [finite]:
source fields:  o(z) — o(Az) +log A, x(z) = MY (\x)
effective fields: 7(z) — 7(Ax) +log A, X(x) — X(A\z)

e invariant low-energy theory: LEFT — £~7T + ZT + ﬁm + Zd where

Lo = Vil —0)(f%/4)e*tr (0,270,%)

ET = Vi(r—0) (fTZ/Q) 627(8117)2

Lo, = —Vi(r—0)(f?B,/2)e" tr (XTE + ZTx)
Ly, = Vy(r — o) szBT ed7

with invariant potentials: V(7(x) — o(x)) — V(r(Ax) — o(Ax))

— No predictability without power counting!
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Power counting hierarchy from matching correlation functions

e recall microscopic theory LMIC(a ) = LMEC(0, y) + 0Tyn(x) + O(0?)

= P9 i) ~ g

0
EMIC
e

0o (x)

e effective theory

(~5m) &

= V(ir—o0) = Z cn(T — )" where ¢, =O((ny —n})")

n=0

— Vd(n) (7(x)) f2B; e 4.

o=x=0

—>  Only a finite number of LECs at each order!
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Matching — role of non-coinciding points

e Magenta: points at distances < meson size
collapse to a single point in the EFT

e Cyan: points at asympt. large distances

321

e Upshot:
V(T — 0') = Z (7‘ — O')n Z Cnk (nf - n’})k
n=0 kE>n
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Leading order lagrangian, finally:

e now set o(x) = 0, obtaining at order m ~ ny — nj ~ p*:

L = Li+Lr+Ly+Ly

L. = (f2/4)e*tr(0,270,%)

L. = (f7/2)e(9u7)

Lo = —(mf?B;/2)eY tr (Z + ET)

£d = [600 + (nf — n}?)(ém + 6117')] f?BT 64T
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