A numerical method to compute derivatives of functions of large complex matrices

Matthias Puhr, Pavel Buividovich

Universität Regensburg

Motivation

- Conserved lattice currents for chiral fermions
- Study anomalous transport in dense QCD
- Example:

Chiral Separation Effect

$$
j_{i}^{A}=\sigma_{\mathrm{CSE}} B_{i}, \quad \sigma_{\mathrm{CSE}}=\frac{1}{2 \pi^{2}} \mu
$$

- Important to have
- Dirac operator that preserves chiral symmetry
- Finite density (quenched approximation)

Motivation

- Conserved lattice currents for chiral fermions
- Study anomalous transport in dense QCD

- Example:

Chiral Separation Effect

$$
j_{i}^{A}=\sigma_{\mathrm{CSE}} B_{i}, \quad \sigma_{\mathrm{CSE}}=\frac{1}{2 \pi^{2}} \mu \quad ? ? ?
$$

- Important to have
- Dirac operator that preserves chiral symmetry
- Finite density (quenched approximation)

Motivation

- Overlap Dirac operator at finite chemical potential μ^{a} :

$$
\mathrm{D}_{\mathrm{ov}}=\frac{1}{a}\left(\mathbb{1}+\gamma_{5} \operatorname{sgn}\left[\gamma_{5} \mathrm{D}_{\mathrm{W}}(\mu)\right]\right)
$$

- Wilson Dirac operator:

$$
\gamma_{5} \mathrm{D}_{\mathrm{w}}(\mu) \gamma_{5}=\mathrm{D}_{\mathrm{w}}^{\dagger}(-\mu)
$$

- Sign function is numerically challenging
- Polynomial/partial fraction approximation
- Krylov subspace methods (finite μ)

[^0]Motivation

Why derivatives?

- Conserved lattice currents
- Anomalous transport, conductivity, charge diffusion, ...
- Derivatives over (background) gauge fields:

$$
j_{v}^{V}(x)=\left\langle\bar{\psi} \frac{\partial \mathrm{D}_{\mathrm{ov}}}{\partial \theta_{v}(x)} \psi\right\rangle \quad \ldots \quad \theta_{v} \text { background g.f. }
$$

- Dynamical HMC Simulations $(\mu=0)$
- Derivatives of Dirac operator needed to evaluate the fermionic force

Matrix Sign Function

- Sign function for complex numbers: $\operatorname{sgn}(z)=\frac{z}{\sqrt{z^{2}}}=\operatorname{sgn}(\operatorname{Re}(z))$
- Generalisation to matrices:
- Spectral form: (λ_{i} eigenvalues of \mathbf{A})

$$
\operatorname{sgn}(\mathbf{A})=\mathbf{U} \operatorname{sgn}(\boldsymbol{\Lambda}) \mathbf{U}^{-1}, \quad \operatorname{sgn}(\boldsymbol{\Lambda}):=\operatorname{diag}\left(\operatorname{sgn}\left(\lambda_{1}\right), \ldots, \operatorname{sgn}\left(\lambda_{n}\right)\right)
$$

- Roberts' iteration:

$$
\mathbf{X}_{k+1}:=\frac{1}{2}\left(\mathbf{X}_{k}+\mathbf{X}_{k}^{-1}\right), \quad \mathbf{X}_{0}=\mathbf{A}
$$

- Approximation necessary
- Derivative of the approximation algorithm?

Numerical derivatives of matrix functions

- Theorem by R. Mathias ${ }^{\text {b }}$:

Let $\mathbf{A}(t) \in \mathbb{C}^{n \times n}$ be differentiable at $t=0$ and assume that the spectrum of $\mathbf{A}(t)$ is contained in an open subset $\mathcal{D} \subset \mathbb{C}$ for all t in some neighbourhood of 0 . Let f be $2 n-1$ times continuously differentiable on \mathcal{D}. We then have:

$$
f\left(\left[\begin{array}{cc}
\mathbf{A}(0) & \partial_{\mathbf{t}} \mathbf{A}(0) \\
0 & \mathbf{A}(0)
\end{array}\right]\right) \equiv\left[\begin{array}{cc}
f(\mathbf{A}(0)) & \left.\frac{\partial}{\partial t}\right|_{t=0} f(\mathbf{A}(t)) \\
0 & f(\mathbf{A}(0))
\end{array}\right]
$$

- Compute the derivative of $f(\mathbf{A})$ without knowing $f^{\prime}(\mathbf{A})$ explicitly!
- Works also for implicit approximation algorithms (Krylov subspace methods)

[^1]
Numerical derivatives of matrix functions

- Useful for efficient numerical calculations?
- Advantage:
- Compute derivative with any approximation algorithm:

$$
\operatorname{sgn}\left(\left[\begin{array}{cc}
\mathbf{A} & \partial_{\mathrm{t}} \mathbf{A} \\
0 & \mathbf{A}
\end{array}\right]\right)\binom{0}{|\psi\rangle}=\binom{\frac{\partial}{\partial t} \operatorname{sgn}(\mathbf{A})|\psi\rangle}{\operatorname{sgn}(\mathbf{A})|\psi\rangle}
$$

- Disadvantage:
- Size of linear space doubles
- Efficiency of approximation \rightarrow spectrum of $\overline{\mathbf{A}}:=\left[\begin{array}{cc}\mathbf{A} & \partial_{\mathbf{t}} \mathbf{A} \\ 0 & \mathbf{A}\end{array}\right]$

Numerical derivatives of matrix functions

- Useful for efficient numerical calculations?
- Advantage:
- Compute derivative with any approximation algorithm:

$$
\operatorname{sgn}\left(\left[\begin{array}{cc}
\mathbf{A} & \partial_{\mathrm{t}} \mathbf{A} \\
0 & \mathbf{A}
\end{array}\right]\right)\binom{0}{|\psi\rangle}=\binom{\frac{\partial}{\partial t} \operatorname{sgn}(\mathbf{A})|\psi\rangle}{\operatorname{sgn}(\mathbf{A})|\psi\rangle}
$$

- Disadvantage:
- Size of linear space doubles
- Efficiency of approximation \rightarrow spectrum of $\overline{\mathbf{A}}:=\left[\begin{array}{cc}\mathbf{A} & \partial_{\mathbf{t}} \mathbf{A} \\ 0 & \mathbf{A}\end{array}\right]$

Polynomial interpolation (order 10) of the sign function for 100 random points in $(-1,-\Delta) \cup(\Delta, 1)$

No Gap

Gap $\Delta=0.2$

Left: $\Delta=0.0$

Right: $\Delta=0.2$

Deflation

- Idea: "Increase gap around 0"
- A diagonalisable, right/left eigenvectors $\left|R_{i}\right\rangle$ and $\left\langle L_{i}\right|$

$$
f(\mathbf{A})|\psi\rangle=\sum_{i=1}^{n} f\left(\lambda_{i}\right)\left|R_{i}\right\rangle\left\langle L_{i} \mid \psi\right\rangle
$$

- In practical calculations, with $\mathbf{P}_{m}^{n}:=\sum_{m+1}^{n}\left|R_{i}\right\rangle\left\langle L_{i}\right|$:

$$
\operatorname{sgn}(A)|\psi\rangle=\underbrace{\sum_{i=1}^{m} \operatorname{sgn}\left(\lambda_{i}\right)\left|R_{i}\right\rangle\left\langle L_{i} \mid \psi\right\rangle}_{\text {exact }}+\underbrace{\operatorname{sgn}(\mathbf{A}) \mathbf{P}_{m}^{n}|\psi\rangle}_{\text {approximation }}
$$

Deflation for derivative computation

- Problem: $\overline{\mathbf{A}}$ in general not diagonalisable
- Jordan decomposition:

$$
\overline{\mathbf{A}}=\mathbf{X} \mathbf{J} \mathbf{X}^{-1}, \quad \mathbf{J}=\operatorname{diag}\left(\mathbf{J}_{1}, \cdots, \mathbf{J}_{n}\right), \quad \mathbf{J}_{i}=\left(\begin{array}{cc}
\lambda_{i} & 1 \\
0 & \lambda_{i}
\end{array}\right)
$$

- Generalisation of the spectral form of $f(\overline{\mathbf{A}})$:

$$
f(\overline{\mathbf{A}})=\mathbf{X} \operatorname{diag}\left(f\left(\mathbf{J}_{1}\right), \cdots, f\left(\mathbf{J}_{n}\right)\right) \mathbf{X}^{-1}, \quad f\left(\mathbf{J}_{i}\right)=\left(\begin{array}{cc}
f\left(\lambda_{i}\right) & f^{\prime}\left(\lambda_{i}\right) \\
0 & f\left(\lambda_{i}\right)
\end{array}\right)
$$

Deflation for derivative computation

- Problem: $\overline{\mathbf{A}}$ in general not diagonalisable
- Jordan decomposition:

$$
\overline{\mathbf{A}}=\mathbf{X} \mathbf{J X}^{-1}, \quad \mathbf{J}=\operatorname{diag}\left(\mathbf{J}_{1}, \cdots, \mathbf{J}_{n}\right), \quad \mathbf{J}_{i}=\left(\begin{array}{cc}
\lambda_{i} & 1 \\
0 & \lambda_{i}
\end{array}\right)
$$

- Generalisation of the spectral form of $f(\overline{\mathbf{A}})$:

$$
f(\overline{\mathbf{A}})=\mathbf{X} \operatorname{diag}\left(f\left(\mathbf{J}_{1}\right), \cdots, f\left(\mathbf{J}_{n}\right)\right) \mathbf{X}^{-1}, \quad f\left(\mathbf{J}_{i}\right)=\left(\begin{array}{cc}
f\left(\lambda_{i}\right) & f^{\prime}\left(\lambda_{i}\right) \\
0 & f\left(\lambda_{i}\right)
\end{array}\right)
$$

- Derivative of sign function vanishes $\Rightarrow \operatorname{sgn}(J)$ is diagonal!

Deflation for derivative computation

- Analogous to diagonalisable case:

$$
\operatorname{sgn}(\overline{\mathbf{A}})|\bar{\psi}\rangle=\sum_{i=1}^{2 n} \operatorname{sgn}(\lambda(i))\left|\bar{R}_{i}\right\rangle\left\langle\bar{L}_{i} \mid \bar{\psi}\right\rangle, \quad \lambda(i):=\mathbf{J}_{i i}
$$

- $\left|\bar{R}_{i}\right\rangle \leftrightarrow$ columns of \mathbf{X} and $\left\langle\bar{L}_{i}\right| \leftrightarrow$ rows of \mathbf{X}^{-1}
- Known in terms of eigenvectors $\left|R_{j}\right\rangle$ of \mathbf{A} and their derivatives $\left|\partial_{t} R_{j}\right\rangle$:

$$
\left|\bar{R}_{(2 j-1)}\right\rangle=\binom{\left|R_{j}\right\rangle}{ 0} \quad\left|\bar{R}_{(2 j)}\right\rangle=\frac{1}{\partial_{t} \lambda_{j}}\binom{\left|\partial_{t} R_{j}\right\rangle}{\left|R_{j}\right\rangle}
$$

- Use Mathias' theorem to compute the derivative:

$$
\overline{\mathbf{A}}=\left[\begin{array}{cc}
\mathbf{A} & \partial_{\mathbf{t}} \mathbf{A} \\
0 & \mathbf{A}
\end{array}\right], \quad \operatorname{sgn}(\overline{\mathbf{A}})\binom{0}{|\psi\rangle}=\binom{\frac{\partial}{\partial t} \operatorname{sgn}(\mathbf{A})|\psi\rangle}{\operatorname{sgn}(\mathbf{A})|\psi\rangle}
$$

- In practical calculations:

$$
\begin{aligned}
\operatorname{sgn}(\overline{\mathbf{A}})\binom{0}{|\psi\rangle}= & \underbrace{\sum_{i=1}^{m} \operatorname{sgn}\left(\lambda_{i}\right)\left\{\binom{\left|R_{i}\right\rangle}{ 0}\left\langle\partial_{t} L_{i} \mid \psi\right\rangle+\binom{\left|\partial_{t} R_{i}\right\rangle}{\left|R_{i}\right\rangle}\left\langle L_{i} \mid \psi\right\rangle\right\}}_{\text {exact }} \\
& +\underbrace{\operatorname{sgn}(\overline{\mathbf{A}}) \overline{\mathbf{P}}_{2 m}^{2 n}\binom{0}{|\psi\rangle}}_{\text {approximation }}
\end{aligned}
$$

- Technical details and pseudo-code implementation: MP, P. Buividovich [1604.08057]

Results

- Quenched $S U(3)$ configurations with Lüscher-Weisz action
- $\left\{\beta=8.45, V=6 \times 18^{3}\right\},\left\{\beta=8.1, V=14 \times 14^{3}\right\}$
- Above and below T_{c} for deconfinement transition
- Nested Lanczos algorithm ${ }^{\text {c }}$
- Outer Krylov size \leftrightarrow order of interpolating polynomial
- Deflation for $\operatorname{sgn}\left(n_{\text {sgn }}\right)$ and derivative $\left(n_{\mathrm{D}}\right)$
- Error estimate:

$$
\operatorname{sgn}(A)^{2}=\mathbb{1} \quad \rightarrow \quad \varepsilon:=\frac{\| \operatorname{sgn}(A)^{2}|\psi\rangle-|\psi\rangle \|}{2\|\psi\|}
$$

[^2]
Results

Effect of deflation:

- $V=14 \times 14^{3}, n_{\text {sgn }}=40, n_{D}=8:$

- Significant improvement of error even for small n_{D} !

Results

Chiral separation effect:

- Result for free chiral quarks:

$$
j_{i}^{A}=\sigma_{\mathrm{CSE}}^{\text {free }} B_{i}, \quad \sigma_{\mathrm{CSE}}^{\text {free }}=\frac{N_{C} \mu}{2 \pi^{2}}
$$

- Prediction for interacting theory ${ }^{d}$:
- Free result if chiral symmetry restored
- Chiral symmetry broken:

$$
\sigma_{\mathrm{CSE}}=\frac{N_{C} \mu}{2 \pi^{2}}\left(1-g_{\pi^{0} \gamma \gamma}\right) \quad g_{\pi^{0} \gamma \gamma}: " \pi^{0} \rightarrow 2 \gamma \text { amplitude" }
$$

- On the lattice:

$$
j_{v}^{A}(x)=\operatorname{tr}\left(\mathrm{D}_{\mathrm{ov}}^{-1} \frac{\partial \mathrm{D}_{\mathrm{ov}}}{\partial \Theta_{v}(x)} \gamma_{5}\right)
$$

[^3]
Results

$$
V=6 \times 18^{3}, T>T_{C}
$$

Results

$$
V=14 \times 14^{3}, T<T_{C}
$$

Summary and Outlook

- Summary
- Numerical derivatives of matrix functions
- Deflation method for non-diagonalisable matrices
- Test with the overlap Dirac operator
- Efficiency significantly improved by deflation
- Outlook
- Application to physical problems
- Work on chiral separation effect in progress
- Increase statistics to measure deviations from $\sigma_{\mathrm{CSE}}^{\mathrm{free}}$ at $T<T_{C}$

[^0]: $a_{\text {J. Bloch }}$ and T. Wettig, Phys.Rev.Lett.97:012003,2006

[^1]: ${ }^{\text {R }}$. Mathias, SIAM J. Matrix Anal. Appl., 17(3):610-620,1996

[^2]: CJ. Bloch and S. Heybrock, Comput.Phys.Commun.182:878-889,2011

[^3]: d G. M. Newman and D. T. Son, PRD73, 045006 (2006) 2

