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Lattice QCD is a set of numerical techniques which use a finite space-time lattice to 

simulate the interactions between quarks and gluons. But, Lattice QCD amplitudes 

are affected by the background of quark-antiquark loops in particles such as a proton. 

The evaluation of loop effects on a given lattice, such as is shown in Figure 1,  is 

extremely computer time intensive and approximation techniques must be introduced. 

In this context, we are attempting to employ matrix deflation algorithms to reduce 

statistical uncertainty in these time-consuming lattice calculations.

In addition, we are developing noise suppression algorithms using polynomial 

subtraction techniques, as well as combining deflation and polynomial methods in an 

original way. 

The  overall goal is to improve computer algorithms leading to the solution of massive 

sets of equations, especially those for Quantum Chromodynamics(QCD).

We achieved same results for a small lattice  of size 84both in MatLab and Fortran 

and the results presented are of a large lattice of size 243 × 32 calculated in Fortran.

Methods

Polynomial Subtraction (POLY)

This method is similar to that one of Perturbative Subtraction. The only difference is 

coefficients are now different from one. These coefficients are calculated using (Minimal 

Residual) Min-Res Projection.  
෩𝑀𝑝𝑜𝑙𝑦
−1 = 𝑎1 + 𝑎2𝑘𝑃 + 𝑎3 𝑘𝑃 2 + 𝑎4 𝑘𝑃 3 + 𝑎5 𝑘𝑃 4 + 𝑎6 𝑘𝑃 5 + 𝑎7 𝑘𝑃 6

Where 𝑎𝑖
′𝑠 are the coefficients obtained from Min-Res Projection

Also, this polynomial can be used in a technique called polynomial preconditioning 

which efficiently evaluates the linear equations for lattice QCD. Convergence of linear 

solvers  is improved by partially projecting the low-lying eigenvalue spectrum of an 

arbitrary matrix to the unit matrix. One replaces the original problem 𝐴𝑥𝑖 = 𝑏𝑖 by 

p 𝐴 𝐴𝑥𝑖 = 𝑝 𝐴 𝑏𝑖

Where 𝑏𝑖 is the 𝑖𝑡ℎ right hand side noise vector and 𝑥𝑖 is the corresponding solution 

vector

HFPS combo = Hermitian Forced Eigenvalue Subtraction + Perturbative Subtraction

HFPOLY combo = Hermitian Forced Eigenvalue Subtraction +Polynomial Subtraction

ESPS combo = Eigenvalue Subtraction +Perturbative Subtraction

There are special considerations which have to be satisfied in these combinations ,since 

deflation methods can be rendered ineffective by methods which add back the removed 

eigenvalue information.

Size of the lattice is 243 × 32 , the number of noise used is 200,kappa value is 0.155 

and the performance is carried out in Fortran.

Linear equations are solved using GMRES-DR (Generalized Minimum RESidual

algorithm-Deflated and Restarted) for the first noise, and GMRES-Proj (similar algorithm 

projected over eigenvectors) for remaining noises.

Results

Conclusions

• At a relatively small quark mass,(kappa=0.155) where most analysis 

algorithms begin to break down, our methods are still very effective.

• Our polynomial/deflation combination methods produce an amazingly good 

signal. Many lattice QCD groups will be very interested in applying our 

algorithm to extract signals faster and more efficiently. 

Background Methods

Non Subtracted Methods(NS)

Solution vectors are computed directly without using any of noise subtraction techniques

Eigenvalue Subtraction (ES)

Performance of iterative solvers is often limited by low eigenvalue spectrum of 

associated matrices. Deflation attempts to remove the effect of such eigenvalues. 

Deflating out eigenvalues with linear equation solver GMRES-DR can mimic the 

structure for off diagonal quark matrix ෪𝑀′
𝑒𝑖𝑔
−1

≡ ේ𝑉′
𝑅
෩Λ′
−1෪𝑉′

𝐿
∗

Where ේ𝑉′
𝑅 and ෪𝑉′

𝐿
∗

are the 

right and left Eigen vectors and ෩Λ′
−1

is the inverse of eigenvalues.

Hermitian Forced Eigenvalue Subtraction(HFES)

Convergence rates are harder to analyze for non-symmetric matrices. So, if one naively 

subtracts on a non-Hermitian matrix, one often increases the size  of error bars. This can 

happen if the right handed eigenvectors of a non-Hermitian system are all pointing in the 

same direction. To combat this problem we have forced our problem to be formulated in 

a Hermitian manner.This is similar to Eigenvalue Subtraction. Only difference is Matrix is 

made Hermitian multiplying by 𝛾5

Perturbative Subtraction(PS)

This is the tried and true method of subtraction used in many lattice calculations. Our 

goal is to find more efficient methods than this .
෩𝑀𝑝𝑒𝑟𝑡
−1 = 1 + 𝑘𝑃 + 𝑘𝑃 2 + 𝑘𝑃 3 + 𝑘𝑃 4 + 𝑘𝑃 5 + 𝑘𝑃 6

Where 𝑃 is the quark matrix and 𝑘 = 0.1550

Methods

The error bars for scalar and vector lattice operators are shown in figs.2 and 3

NS method is not efficient as compared to other methods.

ES method seems to increase the error bars as the number of deflated 

eigenvectors is increased.

HFES method in both cases reduces the error bars. However in neither cases it 

is better than the standard perturbative subtraction (PS) method although after 

140 deflated eigenvectors it is close for scalar operator .

PS method seems to be effective than HFES and close to POLY method.

POLY method is better than perturbative in both cases, especially so for scalar 

operator.

ESPS combo method is inefficient.

HFPS combo  method is the second best method. 

HFPOLY combo is the best method.

Relative Efficiency, RE, of the two methods 

Since esgPOLY combo relative error bar is ~0.77 of the perturbative subtraction 

error in first figure and ~ 0.75 in the second figure ,this means this method is 

approximately 68% more efficient in the first case and 77% more 

effective in the second case, compared to perturbative subtraction. These are 

significant improvements because these calculations are carried out at high 

kappa value which are very small quark masses. This is where most analysis 

algorithms breakdown.

Results
Figure 1: Disconnected quark loops in a proton
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Figure 2: Error bars for a vector quark operator as a function of deflated eigenvalues

Figure 3: Error bars for a scalar quark operator as a function of deflated eigenvalues


