Critical endline of the finite temperature phase transition for 2+1 flavor QCD around the SU(3)-flavor symmetric point

Yoshifumi Nakamura

RIKEN Advanced Institute for Computational Science

in collaboration with

Y. Kuramashi, S. Takeda & A. Ukawa (arXiv:1605.04659)

25 Jul. 2016

Lattice 2016 in Southampton

Motivation

 the critical endline at zero chemical potential for small quark mass region has not determined

Taylor expansion of kurtosis at critical endpoint around m^{sym} (= m_{l} = m_{s})

$$K_E + c(\delta m_u + \delta m_d + \delta m_s) + O(\delta m^2)$$

when changing quark mass as $\delta m_{\rm s} = -2\delta m_{\rm l},~K_{\rm E}$ remains unchanged up to $O(\delta m^2)$

So, slope for the critical endline at m^{sym} should be - 2

we determine the critical endline around m^{sym} with clover fermions

Previous study with staggered fermions

[de Forcrand, Philipsen, '06]

- $N_T = 4$, $a \approx 0.3$ fm
- data exhibits that slope at m^{sym} is not 2
- $am_s^{crit} \approx 0.7$ (roughly 5 times larger than m_s^{phy})

Simulations

- Iwasaki gauge + NP O(a) improved Wilson fermions
- chiral condensate (10 20 noises for TrD^{-1,-2,-3,-4})
- kurtosis intersection method to determine the critical endpoint
- reweighting method to obtain more critical endpoints

•
$$N_t = 6 (a \approx 0.19 \text{fm})$$

•
$$N_l = 10, 16, 20, 24$$

β	К
1.715	0.140900 - 0.141100
1.73	0.140420 - 0.140450
1.75	0.139620 - 0.139700

Susceptibility and kurtosis

Kurtosis intersection plot

fit :
$$K_{\rm E} + aN_I^{1/\nu}(\beta-\beta_{\rm E})$$

Critical endpoints in bare parameter plane

Critical endline

polynomial fits with slope -2 at m^{sym}

- $\chi^2/\text{d.o.f.} \sim 1$
- positive 2nd derivative

(cf. 1/ $\sqrt{t_0}$ = 1.347(30) GeV [Borsanyi et al. '12])

Critical endpoints away from *m*^{sym}(preliminary)

We have determined the critical endpoints (black points) by using $N_f = 3$ configurations

We are doing same analysis by using $N_f = 2 + 1$ configurations, so far only transition points at $N_t = 10$ are determined

Question : $m_s - m_s^{tric} \sim m_1^{2/5}$?

[Rajagopal '95]

Summary

We have determined the critical endline around the SU(3)-flavor symmetric point at $N_t = 6$ with NP O(a) improved Wilson fermions

- we have confirmed slope -2 of the critical endline at symmetric point
- we have found positive 2nd derivative of the critical endline at symmetric point

Future plans

- critical endpoints away from symmetric point
- larger N_t for the continuum limit

Backup slides

