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Hamiltonian Formalism: Why use it?

I Reduced fermion doubling for continuous time calculations.

I Condensed matter problems are naturally formulated in
Hamiltonian perspective.

I We have discovered new sign problems solvable in CT-INT
formalism, defined below for H = H0 + Hint.

Z =
∑

k

∫
[dt ] (−1)kTr

(
e−(β−t)H0Hinte−(t1−t2)H0Hint...

)
,

(1)
Beard, Wiese(1996), Sandvik (1998), Prokof’ev, Svistunov (1998), Rubtsov, Savkin Lichtenstein (2005)

β
0

HintHint

Hint

Hint
Hint

I We can discretize
in time as well for
these solutions.
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The New Solutions

I CT -INT is key to most of these solutions. Most of these
models involve interactions between fermions and
quantum spins. (Non-interacting: Continuous-time QMC
Solvers for Electronic Systems in Fermionic and Bosonic
Baths (Assaad 2014))

I Key idea previously used for lattice field theories.
(Chandrasekharan, PRD 2012)

I Effective for many interesting models, including
antiferromagnets and Kondo models. Also plays well with
Meron Cluster technique, extending parameter space.

I Also simple Z2 gauge theories.
I Algorithms available in (L. Wang, et. al. PRB 2015) that scale

as:

Lattice models

CT-INT CT-AUX
Scaling βN3 βN3
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General Model

I The newly solvable interacting spinless fermion and
quantum spin models have this general form:
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∑
〈xy〉

(
c†x cy + c†y cx

)
+ V

∑
〈xy〉

(
nx −

1
2

) (
ny −

1
2

)

+
∑
xy

(
Jperp

(
S1

x S1
y + S2

x S2
y
)
± J3S3

x S3
y
)
−
∑

x

hx

(
nx −

1
2

)
S1

x

(2)



General Model

I The newly solvable interacting spinless fermion and
quantum spin models have this general form:

H =− t
∑
〈xy〉

(
c†x cy + c†y cx

)
+ V

∑
〈xy〉

(
nx −

1
2

) (
ny −

1
2

)

+
∑
xy

(
Jperp

(
S1

x S1
y + S2

x S2
y
)
± J3S3

x S3
y
)
−
∑

x

hx

(
nx −

1
2

)
S1

x

(2)
I Here, H f

0 is the tight-binding Hamiltonian.

H f
0
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Physics Motivation: Fermion Part

I Even with the simplest quantum spin interaction, where
Hb

0 = J
∑
〈x,y〉 S

3
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y , we see potentially interesting physics.

H =− t
∑
〈xy〉

(
c†x cy + c†y cx

)
+ V

∑
〈xy〉

(
nx − 1

2

)(
ny − 1

2

)

+ J
∑

xy

S3
x S3

y −
∑

x

hx

(
nx − 1

2

)
S1

x

(3)

I t-V part solvable in both CT -INT (Huffman, Chandrasekharan, PRB
2014) and CT -AUX (Li et. al. PRB 2015).
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Physics Motivation: Suspected Phase Diagram
I But remember, spins are correlated with fermions:
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I Thus we propose:

I What happens at the critical point Vc?
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A note on the fermionic part

I We know that the t-V model has no sign problem in CT -INT and
CT -AUX .

H f
0 + Hb

int = −t
∑
〈xy〉

(
c†x cy + c†y cx

)
+ V

∑
〈xy〉

(
nx −

1
2

)(
ny −

1
2

)
,

(5)

I All continuous-time Hamiltonian solutions so far allow for the
following addition:

Hstagg =
∑

x

ηxhx

(
nx −

1
2

)
(6)

I For the bipartite lattice, ηx is +1 for one (even) sublattice, and
−1 for the other (odd) sublattice.

I We show in the following slides how instead adding the spin
sector portion H fb

int =
∑

x hx
(
nx − 1

2

)
S1

x results in no sign
problem for CT -INT specifically.
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Model 1: Factorization
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I The expansion will consist of terms of this form,

(−1)k Tr
(

e−(β−t1)H0Hinte−(t1−t2)H0Hint...Hinte−tk H0

)
, (8)

where H0 = H f
0 + Hb

0 and Hint = H f
int + H f b

int .

β
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HintHint
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I Example term:
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Worldline Approach: The Spin Part

I Key idea: Use the z-basis for spin states. Particles are spin z-up and
holes are spin z-down.

〈↓↑↑↑↓↑|e−(β−t6)Hb
0 S1

5e−(t6−t5)Hb
0 S1

2e−(t5−t4)Hb
0 S1

3e−(t4−t3)Hb
0

×S1
2e−(t3−t2)Hb

0 S1
3e−(t2−t1)Hb

0 S1
5e−(t1)H

b
0 |↓↑↑↑↓↑〉

I If we flip a spin, we
must flip it back
again.

I We need an even
number of every
S1

x operator.
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No Sign Problem

I However,
S1

x S1
x = ηxηxS1

x S1
x . (11)

I Thus it is as if our Hb
int insertion is really

∑
x

hxηx

(
nx −

1
2

)
S1

x . (12)

I And thus most generally the Ising model coupled with
fermions
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)
+ V

∑
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(13)
has no sign problem for any hx .
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Antiferromagnetic Heisenburg Model

I How does Hb
int affect the spin space?

I For two nearest neighbors, x and y , using the basis states
(↑↑, ↑↓, ↓↑, ↓↓), we have

Hb
int,xy =


0 0 0 0
0 −J/2 J/2 0
0 J/2 −J/2 0
0 0 0 0

 (16)

I At the infinitesimal level, we get for e−εH : (↑↓, ↓↑)(
1 +

εJ
2

)
1− εJ

2

(
0 1
1 0

)
(17)

I Therefore, every time the Hamiltonian flips a nearest
neighbor spin pair, the overall matrix element takes on an
extra minus sign.
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Worldline Approach: With H fb
int insertions

Contribution to 〈↓↑↑↓↓↑|e−(β−t6)Hb
0 S1

6e−(t6−t5)Hb
0 S1

3e−(t5−t4)Hb
0 S1

5

×e−(t4−t3)Hb
0 S1

1e−(t3−t2)Hb
0 S1

4e−(t2−t1)Hb
0 S1

1e−t1Hb
0 |↓↑↑↓↓↑〉

I Now our insertions
can hop before
being annihilated.

I Odd-even
(even-odd)
creation-
annihilation has
odd number of
hops. Odd-odd
(even-even)
creation-
annihilation has
even number of
hops.
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Model 2: The Heisenburg Antiferromagnet

I What does this do for the overall sign?

I If we have an odd-even (even-odd) pair of (nx − 1/2)S1
x

insertions, we get an extra negative sign from the bosonic
sector.

I If we have an odd-odd (even-even) pair of (nx − 1/2)S1
x

insertions, we have a positive sign from the bosonic sector.
I Thus again it is as if we are inserting: (unitary

transformations can show this explicitly)∑
x

hxηx

(
nx −

1
2

)
S1

x . (18)

I The antiferromagnet coupled with fermions has no sign
problem in the CT-INT expansion.
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Model 3: Z2 Gauge Theory

I We can extend the these ideas to gauge theories. A simple
example:

H =− t

∑
〈xy〉

c†xσ
3
xycy + c†yσ

3
xycx

− h
∑
〈xy〉

σ1
xy

+
∑

plaquettes

σ3
aσ

3
bσ

3
cσ

3
d

(19)
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I Here, H fb
0 is the free part, coming from the covariant

derivative.

H fb
0
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I Hb
int is a field in the x-direction.

+x

Hb
int
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I Spinful fermionic version considered by (Gazit, Randeria,
Vishwanath (2016)), so there is interest in such models.



Z2 Gauge Theories

I We again use CT -INT . P̂ enforces the Gauss’s Law constraint.

Z =
∑
{k}

(−1)k Tr
(

P̂e−(β−t1)H0Hinte−(t1−t2)H0Hint...Hinte−tk H0

)
=
∑
{k}

(−1)k Tr
(

P̂e−(β−t1)(H f b
0 +Hp)Hb

int...H
b
inte
−tk(H f b

0 +Hp)
)

(20)

I Now we cannot factor into separate fermionic and spin factors,
but we can use z-basis to replace spin operators with numbers.

I Using a Majorana transformation we can confirm that the
fermionic part has no sign problem either.
(Li, Jiang, Yao PRB (2015)), (Wang, Iazzi, Corboz, Troyer PRL (2015)),
(Wei, Wu, Li, Zhang, Xiang, PRL (2016)), (Li, Jiang, Yao, 1601.05780).
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Conclusions

I We can now solve a variety of models involving interacting
fermions and spins using the CT -INT formalism (in
continuous or discrete time).

I The CT -INT formalism also plays well with other
techniques, such as the Meron Cluster method.

I We can also apply these techniques to simple gauge
theories, such as the Z2 gauge theory we have shown
here.
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