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\ » We can discretize
0 in time as well for
Hiy these solutions.
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» CT-INT is key to most of these solutions. Most of these
models involve interactions between fermions and
quantum spins. (Non-interacting: Continuous-time QMC
Solvers for Electronic Systems in Fermionic and Bosonic
Baths (Assaad 2014))

» Key idea previously used for lattice field theories.
(Chandrasekharan, PRD 2012)

» Effective for many interesting models, including
antiferromagnets and Kondo models. Also plays well with
Meron Cluster technique, extending parameter space.

» Also simple Z, gauge theories.

» Algorithms available in (L. Wang, et. al. PRB 2015) that scale
as:

Lattice models

CT-INT CT-AUX
Scaling AN° BN
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» HP is the fermion interaction term from the t-V model.
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is interaction between the fermions and spins.
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Physics Motivation: Fermion Part

» Even with the simplest quantum spin interaction, where
Hy = J>" ., SiS), we see potentially interesting physics.
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» t-V part solvable in both CT-INT (Huffman, Chandrasekharan, PRB
2014) and CT-AUX (Li et. al. PRB 2015).
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Physics Motivation: Fermion Part

» Even with the simplest quantum spin interaction, where

Hy = J>,) SiS), we see potentially interesting physics.
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» t-V part solvable in both CT-INT (Huffman, Chandrasekharan, PRB
2014) and CT-AUX (Li et. al. PRB 2015).
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Physics Motivation: Fermion Part

» Even with the S|mplest quantum spin interaction, where

HP = JZ S y, we see potentially interesting physics.
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» t-V part solvable in both CT-INT (Huffman, Chandrasekharan, PRB
2014) and CT-AUX (Li et. al. PRB 2015).
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Physics Motivation: Suspected Phase Diagram

» But remember, spins are correlated with fermions:
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Physics Motivation: Suspected Phase Diagram

» But remember, spins are correlated with fermions:

H==t3 (o +eo + VS (n-3) (n-3)
xy)

(xy)
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» Thus we propose:
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V<V, V>V,

h

» What happens at the critical point V,?
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A note on the fermionic part

» We know that the t-V model has no sign problem in CT-INT and
CT-AUX.

Ho + Hopo=—t> (CIcy + c}cx) +Vvy (nx - ;) (ny . ;) ,

(xy) (xy)
(5)

» All continuous-time Hamiltonian solutions so far allow for the
following addition:

1
Hstagg = Z nXhX (nx - 2) (6)
X

» For the bipartite lattice, 7y is +1 for one (even) sublattice, and
—1 for the other (odd) sublattice.

» We show in the following slides how instead adding the spin
sector portion H% = 3" h, (nc — §) S} results in no sign

problem for CT-INT specifically.
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Model 1: Factorization

:—tz (Cny+CyCX) T VZ<nX_7) ( y_%>

) ()
+J> SS) - > hy (nx— 5) S
Xy X

» The expansion will consist of terms of this form,
(—1) Tr (0o (- Hye b5, (8)

where Hy = Hjj + H? and Hy, = H, + HIE.
» Example term:

Py (—1)2 1 T <e (B=t)bo (i g=(h—t)Fo (nX;>Sle’2”°)~ ©)

» We can rewrite
b b
By (=1 Try (672 5o %)

10
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Worldline Approach: The Spin Part

> Key idea: Use the z-basis for spin states. Particles are spin z-up and
holes are spin z-down.
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No Sign Problem
» However,
SJ(SJ( :nXUXS;I(S;I(' (11)

» Thus it is as if our H?

int

5 (- 5 ) Sk (12)

» And thus most generally the Ising model coupled with
fermions

H=-1t>" (cicy - c},cx> +VY (nx —~ ;) <ny - ;)
(xy)

(xy)

+JY SIS) - hy (nx— ;) Sy
Xy X

insertion is really

has no sign problem for any hy.
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» We add a bit more complexity to the spin section for this
second model, considering

=—ty (cxcy+cycx) +VY (”X* *) (”y B %)

(xy) (xy)

+JZ<SX sy—f) th<nx— )

(xy)

(14)

» This time we treat the spin piece H? as an interaction
piece. We call it HZ,.

» The new H,; is

Hint Hnt + Hitrjlt + Hfb

nt*
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Antiferromagnetic Heisenburg Model

» How does HP

int
» For two nearest neighbors, x and y, using the basis states

(11,14, 41, 14), we have

affect the spin space?

0o 0 0 o0
o [0 -2 u2 o

Aoy =| 0 g2 —J2 0 (16)
0o 0 0 o0

» At the infinitesimal level, we get for e=<"": (1], 1)

ed e (0 1
(1+2>Il—2<1 O) (17)

» Therefore, every time the Hamiltonian flips a nearest
neighbor spin pair, the overall matrix element takes on an
extra minus sign.
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Worldline Approach: With H® insertions

nt
Contribution to (|11}/1] e~ (#~ ) Sle~(~t)Hy 51 o= (65— t)H5 5}

% e_(t4_t3)HgS11 e—(tg—tg)HgSl e (=t )Hgs11 e tHg T

» Now our insertions
can hop before
being annihilated.

» Odd-even
(even-odd)
creation-
annihilation has
odd number of
hops. Odd-odd
(even-even) ;
creation- I
annihilation has
even number of
hops.

time
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Model 2: The Heisenburg Antiferromagnet

» What does this do for the overall sign?

» If we have an odd-even (even-odd) pair of (ny — 1/2) S}
insertions, we get an extra negative sign from the bosonic
sector.

» If we have an odd-odd (even-even) pair of (ny — 1/2) S}
insertions, we have a positive sign from the bosonic sector.

» Thus again it is as if we are inserting: (unitary
transformations can show this explicitly)

5 (5 ) Sk (18)

» The antiferromagnet coupled with fermions has no sign
problem in the CT-INT expansion.
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Model 3: Z, Gauge Theory

» We can extend the these ideas to gauge theories. A simple

example:
fb
/ ’
H= (Z CXO'XyCy + CyUXny) hz Oxy
(xy) (19)
Z Ugagagad
plaquettes

» Here, HY is the free part, coming from the covariant
derivative.
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» HP is afield in the x-direction.
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» We can extend the these ideas to gauge theories. A simple
example:

—t (Z clod, ¢y + cyo—xycx) hz ory

{(xy)
+ Z agagag 02

plaquettes

(19)

HP
» HP is a sum over plaguettes.




Model 3: Z, Gauge Theory

» We can extend the these ideas to gauge theories. A simple

example:
i (Z Ckoy Gy + Cyaxycx) hz Txy
(xy) (19)
+ Y 0500505
plaquettes

> Invariant under GjcxGx = —cx, Gio}, Gy —= o}, , and

T 3 _ 1 1 1 1
Gxos Gx = —o3 , where Gy = Ox T xOxs Oy Tx (2% — 1)
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Model 3: Z, Gauge Theory

» We can extend the these ideas to gauge theories. A simple
example:

H=—t|Y clo},c +cjod,on | —hD oy
(xy) (xy)

+ Z Ugagagag

plaquettes

(19)

» Spinful fermionic version considered by (Gazit, Randeria,
Vishwanath (2016)), so there is interest in such models.

Charged fermions coupled to Z, gauge fields: Superfluidity, confinement and emergent
Dirac fermions.
Snir Gazit,' Mohit Randeria,® and Ashvin Vishwanath!?

! Department of Physics, University of California, Berkeley, CA 04720, USA
2 Department of Physics, The Ohio State University, Columbus, OH 43210
3 Department of Physics, Harvard University, Cambridge MA 02138, USA

(Dated: July 15, 2016)
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but we can use z-basis to replace spin operators with numbers.
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» We again use CT-INT. P enforces the Gauss’s Law constraint.

Z=> (-1 (fve—(ﬁ—f‘)”o Hiy e~ (=)o Him...Hime‘tkHO)
{k}
=y (—1)"Tr (f:'fef(ﬁfﬁ)H6(51)me*fk/'/6(sk))
{k}.{s}

(20)
» Now we cannot factor into separate fermionic and spin factors,
but we can use z-basis to replace spin operators with numbers.
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7> Gauge Theories

» We again use CT-INT. P enforces the Gauss’s Law constraint.

Z =3 () Tr (Pe Mot o (bt Hy o)
{k}
Y (1) (Pre e bis)
{k}.{s}
(20)
» Now we cannot factor into separate fermionic and spin factors,
but we can use z-basis to replace spin operators with numbers.

» Using a Majorana transformation we can confirm that the
fermionic part has no sign problem either.
(Li, Jiang, Yao PRB (2015)), (Wang, lazzi, Corboz, Troyer PRL (2015)),
(Wei, Wu, Li, Zhang, Xiang, PRL (2016)), (Li, Jiang, Yao, 1601.05780).
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Conclusions

» We can now solve a variety of models involving interacting
fermions and spins using the CT-INT formalism (in
continuous or discrete time).

» The CT-INT formalism also plays well with other
techniques, such as the Meron Cluster method.

» We can also apply these techniques to simple gauge

theories, such as the 7, gauge theory we have shown
here.
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