Monte Carlo methods in continuous time for lattice Hamiltonians

Emilie Huffman with Shailesh Chandrasekharan
 Duke University

The 34th annual International Symposium on Lattice Field Theory

Hamiltonian Formalism: Why use it?

- Reduced fermion doubling for continuous time calculations.

Hamiltonian Formalism: Why use it?

- Reduced fermion doubling for continuous time calculations.
- Condensed matter problems are naturally formulated in Hamiltonian perspective.

Hamiltonian Formalism: Why use it?

- Reduced fermion doubling for continuous time calculations.
- Condensed matter problems are naturally formulated in Hamiltonian perspective.
- We have discovered new sign problems solvable in CT-INT formalism, defined below for $H=H_{0}+H_{\text {int }}$.

$$
\begin{equation*}
Z=\sum_{k} \int[d t](-1)^{k} \operatorname{Tr}\left(e^{-(\beta-t) H_{0}} H_{\text {int }} e^{-\left(t_{1}-t_{2}\right) H_{0}} H_{\mathrm{int}} \cdots\right), \tag{1}
\end{equation*}
$$

Beard, Wiese(1996), Sandvik (1998), Prokof'ev, Svistunov (1998), Rubtsov, Savkin Lichtenstein (2005)

Hamiltonian Formalism: Why use it?

- Reduced fermion doubling for continuous time calculations.
- Condensed matter problems are naturally formulated in Hamiltonian perspective.
- We have discovered new sign problems solvable in CT-INT formalism, defined below for $H=H_{0}+H_{\text {int }}$.

$$
\begin{equation*}
Z=\sum_{k} \int[d t](-1)^{k} \operatorname{Tr}\left(e^{-(\beta-t) H_{0}} H_{\text {int }} e^{-\left(t_{1}-t_{2}\right) H_{0}} H_{\text {int }} \cdots\right), \tag{1}
\end{equation*}
$$

Beard, Wiese(1996), Sandvik (1998), Prokof'ev, Svistunov (1998), Rubtsov, Savkin Lichtenstein (2005)

- We can discretize in time as well for these solutions.

The New Solutions

- CT-INT is key to most of these solutions. Most of these models involve interactions between fermions and quantum spins. (Non-interacting: Continuous-time QMC Solvers for Electronic Systems in Fermionic and Bosonic Baths (Assaad 2014))

The New Solutions

- CT-INT is key to most of these solutions. Most of these models involve interactions between fermions and quantum spins. (Non-interacting: Continuous-time QMC Solvers for Electronic Systems in Fermionic and Bosonic Baths (Assaad 2014))
- Key idea previously used for lattice field theories. (Chandrasekharan, PRD 2012)

RAPID COMMUNICATIONS
PHYSICAL REVIEW D 86, 021701 (R) (2012)
Solutions to sign problems in lattice Yukawa models
Shailesh Chandrasekharan
Department of Physics, Duke University, Durham, North Carolina 27708, USA
(Received 22 May 2012; published 3 July 2012)

The New Solutions

- CT-INT is key to most of these solutions. Most of these models involve interactions between fermions and quantum spins. (Non-interacting: Continuous-time QMC Solvers for Electronic Systems in Fermionic and Bosonic Baths (Assaad 2014))
- Key idea previously used for lattice field theories. (Chandrasekharan, PRD 2012)
- Effective for many interesting models, including antiferromagnets and Kondo models. Also plays well with Meron Cluster technique, extending parameter space.

Meron-Cluster Solution of Fermion Sign Problems

The New Solutions

- CT-INT is key to most of these solutions. Most of these models involve interactions between fermions and quantum spins. (Non-interacting: Continuous-time QMC Solvers for Electronic Systems in Fermionic and Bosonic Baths (Assaad 2014))
- Key idea previously used for lattice field theories. (Chandrasekharan, PRD 2012)
- Effective for many interesting models, including antiferromagnets and Kondo models. Also plays well with Meron Cluster technique, extending parameter space.
- Also simple \mathbb{Z}_{2} gauge theories.

The New Solutions

- CT-INT is key to most of these solutions. Most of these models involve interactions between fermions and quantum spins. (Non-interacting: Continuous-time QMC Solvers for Electronic Systems in Fermionic and Bosonic Baths (Assaad 2014))
- Key idea previously used for lattice field theories. (Chandrasekharan, PRD 2012)
- Effective for many interesting models, including antiferromagnets and Kondo models. Also plays well with Meron Cluster technique, extending parameter space.
- Also simple \mathbb{Z}_{2} gauge theories.
- Algorithms available in (L. Wang, et. al. PRB 2015) that scale as:

Lattice models

CT-INT CT-AUX

Scaling $\beta N^{3} \quad \beta N^{3}$

General Model

- The newly solvable interacting spinless fermion and quantum spin models have this general form:

$$
\begin{align*}
H= & -t \sum_{\langle x y\rangle}\left(c_{x}^{\dagger} c_{y}+c_{y}^{\dagger} c_{x}\right)+V \sum_{\langle x y\rangle}\left(n_{x}-\frac{1}{2}\right)\left(n_{y}-\frac{1}{2}\right) \\
& +\sum_{x y}\left(J_{\text {perp }}\left(S_{x}^{1} S_{y}^{1}+S_{x}^{2} S_{y}^{2}\right) \pm J_{3} S_{x}^{3} S_{y}^{3}\right)-\sum_{x} n_{x}\left(n_{x}-\frac{1}{2}\right) S_{x}^{1} \tag{2}
\end{align*}
$$

General Model

- The newly solvable interacting spinless fermion and quantum spin models have this general form:

$$
\begin{align*}
H= & -t \sum_{\langle x y\rangle}\left(c_{x}^{\dagger} c_{y}+c_{y}^{\dagger} c_{x}^{\prime}\right)+V \sum_{\langle x y\rangle}\left(n_{x}-\frac{1}{2}\right)\left(n_{y}-\frac{1}{2}\right) \\
& +\sum_{x y}\left(J_{\text {perp }}\left(S_{x}^{1} S_{y}^{1}+S_{x}^{2} S_{y}^{2}\right) \pm J_{3} S_{x}^{3} S_{y}^{3}\right)-\sum_{x} n_{x}\left(n_{x}-\frac{1}{2}\right) S_{x}^{1} \tag{2}
\end{align*}
$$

- Here, H_{0}^{f} is the tight-binding Hamiltonian.

General Model

- The newly solvable interacting spinless fermion and quantum spin models have this general form:

$$
\begin{align*}
H= & -t \sum_{\langle x y\rangle}\left(c_{x}^{\dagger} c_{y}+c_{y}^{\dagger} c_{x}\right)+V \sum_{\langle x y\rangle}\left(n_{x}-\frac{1}{2}\right) \stackrel{\left(n_{y}-\frac{1}{2}\right)}{H_{\text {int }}^{b}} \\
& +\sum_{x y}\left(J_{\text {perp }}\left(S_{x}^{1} S_{y}^{1}+S_{x}^{2} S_{y}^{2}\right) \pm J_{3}^{3} S_{x}^{3} S_{y}^{3}\right)-\sum_{x} n_{x}\left(n_{x}-\frac{1}{2}\right) S_{x}^{1} \tag{2}
\end{align*}
$$

- $H_{\text {int }}^{b}$ is the fermion interaction term from the t -V model.

General Model

- The newly solvable interacting spinless fermion and quantum spin models have this general form:

$$
\begin{align*}
H= & -t \sum_{\langle x y\rangle}\left(c_{x}^{\dagger} c_{y}+c_{y}^{\dagger} c_{x}\right)+V \sum_{\langle x y\rangle}\left(n_{x}-\frac{1}{2}\right)\left(n_{y}-\frac{1}{2}\right) \\
& +\sum_{x y}\left(J_{\text {perp }}\left(S_{x}^{1} S_{y}^{1}+S_{x}^{2} S_{y}^{2}\right) \pm J_{3} S_{x}^{3} S_{y}^{3}\right)-\sum_{x} n_{x}\left(n_{x}-\frac{1}{2}\right) S_{x}^{1}
\end{align*}
$$

- Then H_{0}^{b} is a somewhat general spin model.

General Model

- The newly solvable interacting spinless fermion and quantum spin models have this general form:

$$
\begin{aligned}
H= & -t \sum_{\langle x y\rangle}\left(c_{x}^{\dagger} c_{y}+c_{y}^{\dagger} c_{x}\right)+V \sum_{\langle x y\rangle}\left(n_{x}-\frac{1}{2}\right)\left(n_{y}-\frac{1}{2}\right) \\
& +\sum_{x y}\left(J_{\operatorname{perp}}\left(S_{x}^{1} S_{y}^{1}+S_{x}^{2} S_{y}^{2}\right) \pm J_{3} S_{x}^{3} S_{y}^{3}\right)-\sum_{x} n_{x}\left(n_{x}-\frac{1}{2}\right) S_{x}^{1}
\end{aligned}
$$

- And $H_{\text {int }}^{f b}$ is interaction between the fermions and spins.

Physics Motivation: Fermion Part

- Even with the simplest quantum spin interaction, where $H_{0}^{b}=J \sum_{\langle x, y\rangle} S_{x}^{3} S_{y}^{3}$, we see potentially interesting physics.

$$
\begin{align*}
H= & -t \sum_{\langle x y\rangle}\left(c_{x}^{\dagger} c_{y}+c_{y}^{\dagger} c_{x}\right)+V \sum_{\langle x y\rangle}\left(n_{x}-\frac{1}{2}\right)\left(n_{y}-\frac{1}{2}\right) \tag{3}\\
& +J \sum_{x y} S_{x}^{3} S_{y}^{3}-\sum_{x} h_{x}\left(n_{x}-\frac{1}{2}\right) s_{x}^{1}
\end{align*}
$$

Physics Motivation: Fermion Part

- Even with the simplest quantum spin interaction, where $H_{0}^{b}=J \sum_{\langle x, y\rangle} S_{x}^{3} S_{y}^{3}$, we see potentially interesting physics.

$$
\begin{align*}
H= & -t \sum_{\langle x y\rangle}\left(c_{x}^{\dagger} c_{y}+c_{y}^{\dagger} c_{x}\right)+V \sum_{\langle x y\rangle}\left(n_{x}-\frac{1}{2}\right)\left(n_{y}-\frac{1}{2}\right) \tag{3}\\
& +J \sum_{x y} S_{x}^{3} S_{y}^{3}-\sum_{x} n_{x}\left(n_{x}-\frac{1}{2}\right) s_{x}^{1}
\end{align*}
$$

- t-V part solvable in both CT-INT (Huffman, Chandrasekharan, PRB 2014) and CT-AUX (Li et. al. PRB 2015).

PHYSICAL REVIEW B 89, 111101(R) (2014)
Solution to sign problems in half-filled spin-polarized electronic systems
Emilic Fulton Huffman and Shailesh Chandrasekharan
Department of Physics, Duke University, Durham, North Carolina 27708, USA
(Received 19 December 2013; revised manuscript received 14 February 2014; published 12 March 2014)
RAPID COMMUNICATIONS
PHYSICAL REVIEW B 91, 241117(R) (2015)
\%
Solving the fermion sign problem in quantum Monte Carlo simulations by Majorana representation

Physics Motivation: Fermion Part

- Even with the simplest quantum spin interaction, where $H_{0}^{b}=J \sum_{\langle x, y\rangle} S_{x}^{3} S_{y}^{3}$, we see potentially interesting physics.

$$
\begin{align*}
H= & -t \sum_{\langle x y\rangle}\left(c_{x}^{\dagger} c_{y}+c_{y}^{\dagger} c_{x}\right)+V \sum_{\langle x y\rangle}\left(n_{x}-\frac{1}{2}\right)\left(n_{y}-\frac{1}{2}\right) \tag{3}\\
& +J \sum_{x y} S_{x}^{3} S_{y}^{3}-\sum_{x} n_{x}\left(n_{x}-\frac{1}{2}\right) s_{x}^{1}
\end{align*}
$$

- $t-V$ part solvable in both CT-INT (Huffman, Chandrasekharan, PRB 2014) and CT-AUX (Li et. al. PRB 2015).

```
fermions:
```


Figure: L. Wang, P. Corboz, M. Troyer, New J. Phys, 16, 103008.

Physics Motivation: Fermion Part

- Even with the simplest quantum spin interaction, where $H_{0}^{b}=J \sum_{\langle x, y\rangle} S_{x}^{3} S_{y}^{3}$, we see potentially interesting physics.

$$
\begin{align*}
H= & -t \sum_{\langle x y\rangle}\left(c_{x}^{\dagger} c_{y}+c_{y}^{\dagger} c_{x}\right)+V \sum_{\langle x y\rangle}\left(n_{x}-\frac{1}{2}\right)\left(n_{y}-\frac{1}{2}\right) \tag{3}\\
& +J \sum_{x y} s_{x}^{3} S_{y}^{3}-\sum_{x} n_{x}\left(n_{x}-\frac{1}{2}\right) s_{x}^{1}
\end{align*}
$$

- t-V part solvable in both CT-INT (Huffman, Chandrasekharan, PRB 2014) and CT-AUX (Li et. al. PRB 2015).

```
fermions:
```


Figure: L. Wang, P. Corboz, M. Troyer, New J. Phys. 16, 103008.

Physics Motivation: Suspected Phase Diagram

- But remember, spins are correlated with fermions:

$$
\begin{align*}
H= & -t \sum_{\langle x y\rangle}\left(c_{x}^{\dagger} c_{y}+c_{y}^{\dagger} c_{x}\right)+V \sum_{\langle x y\rangle}\left(n_{x}-\frac{1}{2}\right)\left(n_{y}-\frac{1}{2}\right) \tag{4}\\
& +J \sum_{x y} S_{x}^{3} S_{y}^{3}-\sum_{x} h_{x}\left(n_{x}-\frac{1}{2}\right) S_{x}^{1}
\end{align*}
$$

Physics Motivation: Suspected Phase Diagram

- But remember, spins are correlated with fermions:

$$
\begin{align*}
H= & -t \sum_{\langle x y\rangle}\left(c_{x}^{\dagger} c_{y}+c_{y}^{\dagger} c_{x}\right)+V \sum_{\langle x y\rangle}\left(n_{x}-\frac{1}{2}\right)\left(n_{y}-\frac{1}{2}\right) \tag{4}\\
& +J \sum_{x y} S_{x}^{3} S_{y}^{3}-\sum_{x} n_{x}\left(n_{x}-\frac{1}{2}\right) S_{x}^{1}
\end{align*}
$$

- Thus we propose:

- What happens at the critical point V_{c} ?

A note on the fermionic part

- We know that the t-V model has no sign problem in CT-INT and CT-AUX.

$$
\begin{equation*}
H_{0}^{f}+H_{\mathrm{int}}^{b}=-t \sum_{\langle x y\rangle}\left(c_{x}^{\dagger} c_{y}+c_{y}^{\dagger} c_{x}\right)+V \sum_{\langle x y\rangle}\left(n_{x}-\frac{1}{2}\right)\left(n_{y}-\frac{1}{2}\right), \tag{5}
\end{equation*}
$$

A note on the fermionic part

- We know that the t-V model has no sign problem in CT-INT and CT-AUX.

$$
\begin{equation*}
H_{0}^{f}+H_{\mathrm{int}}^{b}=-t \sum_{\langle x y\rangle}\left(c_{x}^{\dagger} c_{y}+c_{y}^{\dagger} c_{x}\right)+V \sum_{\langle x y\rangle}\left(n_{x}-\frac{1}{2}\right)\left(n_{y}-\frac{1}{2}\right), \tag{5}
\end{equation*}
$$

- All continuous-time Hamiltonian solutions so far allow for the following addition:

$$
\begin{equation*}
H_{\text {stagg }}=\sum_{x} \eta_{x} n_{x}\left(n_{x}-\frac{1}{2}\right) \tag{6}
\end{equation*}
$$

A note on the fermionic part

- We know that the t-V model has no sign problem in CT-INT and CT-AUX.

$$
\begin{equation*}
H_{0}^{f}+H_{\mathrm{int}}^{b}=-t \sum_{\langle x y\rangle}\left(c_{x}^{\dagger} c_{y}+c_{y}^{\dagger} c_{x}\right)+V \sum_{\langle x y\rangle}\left(n_{x}-\frac{1}{2}\right)\left(n_{y}-\frac{1}{2}\right), \tag{5}
\end{equation*}
$$

- All continuous-time Hamiltonian solutions so far allow for the following addition:

$$
\begin{equation*}
H_{\text {stagg }}=\sum_{x} \eta_{x} h_{x}\left(n_{x}-\frac{1}{2}\right) \tag{6}
\end{equation*}
$$

- For the bipartite lattice, η_{x} is +1 for one (even) sublattice, and -1 for the other (odd) sublattice.

A note on the fermionic part

- We know that the t-V model has no sign problem in CT-INT and CT-AUX.

$$
\begin{equation*}
H_{0}^{f}+H_{\mathrm{int}}^{b}=-t \sum_{\langle x y\rangle}\left(c_{x}^{\dagger} c_{y}+c_{y}^{\dagger} c_{x}\right)+V \sum_{\langle x y\rangle}\left(n_{x}-\frac{1}{2}\right)\left(n_{y}-\frac{1}{2}\right), \tag{5}
\end{equation*}
$$

- All continuous-time Hamiltonian solutions so far allow for the following addition:

$$
\begin{equation*}
H_{\text {stagg }}=\sum_{x} \eta_{x} h_{x}\left(n_{x}-\frac{1}{2}\right) \tag{6}
\end{equation*}
$$

- For the bipartite lattice, η_{x} is +1 for one (even) sublattice, and -1 for the other (odd) sublattice.
- We show in the following slides how instead adding the spin sector portion $H_{\mathrm{int}}^{\mathrm{fb}}=\sum_{x} h_{x}\left(n_{x}-\frac{1}{2}\right) S_{x}^{1}$ results in no sign problem for CT-INT specifically.

Model 1: Factorization

$$
\begin{align*}
H= & -t \sum_{\langle x y\rangle}\left(c_{x}^{\dagger} c_{y}+c_{y}^{\dagger} c_{x}\right)+V \sum_{\langle x y\rangle}\left(n_{x}-\frac{1}{2}\right)\left(n_{y}-\frac{1}{2}\right) \tag{7}\\
& +J \sum_{x y} S_{x}^{3} S_{y}^{3}-\sum_{x} h_{x}\left(n_{x}-\frac{1}{2}\right) s_{x}^{1}
\end{align*}
$$

- The expansion will consist of terms of this form,

$$
\begin{equation*}
(-1)^{k} \operatorname{Tr}\left(e^{-\left(\beta-t_{1}\right) H_{0}} H_{\text {int }} e^{-\left(t_{1}-t_{2}\right) H_{0}} H_{\text {int }} \ldots H_{\text {int }} e^{-t_{k} H_{0}}\right), \tag{8}
\end{equation*}
$$

where $H_{0}=H_{0}^{f}+H_{0}^{b}$ and $H_{\text {int }}=H_{\text {int }}^{f}+H_{\text {int }}^{f b}$.

Model 1: Factorization

$$
\begin{align*}
H= & -t \sum_{\langle x y\rangle}\left(c_{x}^{\dagger} c_{y}+c_{y}^{\dagger} c_{x}\right)+V \sum_{\langle x y\rangle}\left(n_{x}-\frac{1}{2}\right)\left(n_{y}-\frac{1}{2}\right) \tag{7}\\
& +J \sum_{x y} S_{x}^{3} S_{y}^{3}-\sum_{x} n_{x}\left(n_{x}-\frac{1}{2}\right) S_{x}^{1}
\end{align*}
$$

- The expansion will consist of terms of this form,

$$
\begin{equation*}
(-1)^{k} \operatorname{Tr}\left(e^{-\left(\beta-t_{1}\right) H_{0}} H_{\mathrm{int}} e^{-\left(t_{1}-t_{2}\right) H_{0}} H_{\mathrm{int}} \ldots H_{\mathrm{int}} e^{-t_{k} H_{0}}\right) \tag{8}
\end{equation*}
$$

where $H_{0}=H_{0}^{f}+H_{0}^{b}$ and $H_{\mathrm{int}}=H_{\mathrm{int}}^{f}+H_{\mathrm{int}}^{f b}$.

- Example term:

$$
\begin{equation*}
h_{x}(-1)^{2+1} \operatorname{Tr}\left(e^{-\left(\beta-t_{1}\right) H_{0}} H_{\mathrm{int}}^{f} e^{-\left(t_{1}-t_{2}\right) H_{0}}\left(n_{x}-\frac{1}{2}\right) S_{x}^{1} e^{-t_{2} H_{0}}\right) . \tag{9}
\end{equation*}
$$

Model 1: Factorization

$$
\begin{align*}
H= & -t \sum_{\langle x y\rangle}\left(c_{x}^{\dagger} c_{y}+c_{y}^{\dagger} c_{x}\right)+V \sum_{\langle x y\rangle}\left(n_{x}-\frac{1}{2}\right)\left(n_{y}-\frac{1}{2}\right) \tag{7}\\
& +J \sum_{x y} S_{x}^{3} S_{y}^{3}-\sum_{x} h_{x}\left(n_{x}-\frac{1}{2}\right) s_{x}^{1}
\end{align*}
$$

- The expansion will consist of terms of this form,

$$
\begin{equation*}
(-1)^{k} \operatorname{Tr}\left(e^{-\left(\beta-t_{1}\right) H_{0}} H_{\text {int }} e^{-\left(t_{1}-t_{2}\right) H_{0}} H_{\text {int }} \ldots H_{\text {int }} e^{-t_{k} H_{0}}\right), \tag{8}
\end{equation*}
$$

where $H_{0}=H_{0}^{f}+H_{0}^{b}$ and $H_{\text {int }}=H_{\mathrm{int}}^{f}+H_{\mathrm{int}}^{f b}$.

- Example term:

$$
\begin{equation*}
h_{x}(-1)^{2+1} \operatorname{Tr}\left(e^{-\left(\beta-t_{1}\right) H_{0}} H_{\mathrm{int}}^{f} e^{-\left(t_{1}-t_{2}\right) H_{0}}\left(n_{x}-\frac{1}{2}\right) S_{x}^{1} e^{-t_{2} H_{0}}\right) . \tag{9}
\end{equation*}
$$

- We can rewrite

$$
\begin{align*}
& h_{i}(-1)^{2+1} \operatorname{Tr}_{b}\left(e^{-\left(\beta-t_{2}\right) H_{0}^{b}} S_{x}^{1} e^{-t_{2} H_{0}^{b}}\right) \\
& \times \operatorname{Tr}_{f}\left(e^{-\left(\beta-t_{1}\right) H_{0}^{f}} H_{\mathrm{int}}^{f} e^{-\left(t_{1}-t_{2}\right) H_{0}^{f}}\left(n_{x}-\frac{1}{2}\right) e^{-t_{2} H_{0}^{f}}\right) . \tag{10}
\end{align*}
$$

Worldline Approach: The Spin Part

- Key idea: Use the z-basis for spin states. Particles are spin z-up and holes are spin z-down.

Worldline Approach: The Spin Part

- Key idea: Use the z-basis for spin states. Particles are spin z-up and holes are spin z-down.

$$
\begin{aligned}
\langle\downarrow \uparrow \uparrow \uparrow \downarrow \uparrow| e^{-\left(\beta-t_{6}\right) H_{0}^{b}} & S_{5}^{1} e^{-\left(t_{6}-t_{5}\right) H_{0}^{b}} S_{2}^{1} e^{-\left(t_{5}-t_{4}\right) H_{0}^{b}} S_{3}^{1} e^{-\left(t_{4}-t_{3}\right) H_{0}^{b}} \\
& \times S_{2}^{1} e^{-\left(t_{3}-t_{2}\right) H_{0}^{b}} S_{3}^{1} e^{-\left(t_{2}-t_{1}\right) H_{0}^{b}} S_{5}^{1} e^{-\left(t_{1}\right) H_{0}^{b}}|\downarrow \uparrow \uparrow \uparrow \downarrow \uparrow\rangle
\end{aligned}
$$

Worldline Approach: The Spin Part

- Key idea: Use the z-basis for spin states. Particles are spin z-up and holes are spin z-down.
$\langle\downarrow \uparrow \uparrow \uparrow \downarrow \uparrow| e^{-\left(\beta-t_{6}\right) H_{0}^{b}} S_{5}^{1} e^{-\left(t_{6}-t_{5}\right) H_{0}^{b}} S_{2}^{1} e^{-\left(t_{5}-t_{4}\right) H_{0}^{b}} S_{3}^{1} e^{-\left(t_{4}-t_{3}\right) H_{0}^{b}}$

$$
\times S_{2}^{1} e^{-\left(t_{3}-t_{2}\right) H_{0}^{b}} S_{3}^{1} e^{-\left(t_{2}-t_{1}\right) H_{0}^{b}} S_{5}^{1} e^{-\left(t_{1}\right) H_{0}^{b}}|\downarrow \uparrow \uparrow \uparrow \downarrow \uparrow\rangle
$$

- If we flip a spin, we must flip it back again.

Worldline Approach: The Spin Part

- Key idea: Use the z-basis for spin states. Particles are spin z-up and holes are spin z-down.
$\langle\downarrow \uparrow \uparrow \uparrow \downarrow \uparrow| e^{-\left(\beta-t_{6}\right) H_{0}^{b}} S_{5}^{1} e^{-\left(t_{6}-t_{5}\right) H_{0}^{b}} S_{2}^{1} e^{-\left(t_{5}-t_{4}\right) H_{0}^{b}} S_{3}^{1} e^{-\left(t_{4}-t_{3}\right) H_{0}^{b}}$

$$
\times S_{2}^{1} e^{-\left(t_{3}-t_{2}\right) H_{0}^{b}} S_{3}^{1} e^{-\left(t_{2}-t_{1}\right) H_{0}^{b}} S_{5}^{1} e^{-\left(t_{1}\right) H_{0}^{b}}|\downarrow \uparrow \uparrow \uparrow \downarrow \uparrow\rangle
$$

- If we flip a spin, we must flip it back again.
- We need an even number of every S_{x}^{1} operator.

	1	2	3	4	5	6
	-	-	-	-	-	
	\times					
	$\stackrel{\times}{\times}$	\times				
	$\stackrel{\times}{\times}$	$\stackrel{\times}{\times}$	-			
\bigcirc	$\stackrel{\times}{\times}$	$\stackrel{\times}{\times}$	\times			
g	$\stackrel{\times}{\times}$	$\stackrel{\times}{\times}$	$\stackrel{\times}{\times}$			
+	$\stackrel{\times}{\times}$	¢	\times			
	x \times \times \times \times		©		-	
	$\stackrel{\times}{\times}$				\times	
	$\stackrel{\times}{\times}$	-			\times	
	-	-	-	-	-	
	1	2	3	4	5	6

No Sign Problem

- However,

$$
\begin{equation*}
S_{x}^{1} S_{x}^{1}=\eta_{x} \eta_{x} S_{x}^{1} S_{x}^{1} \tag{11}
\end{equation*}
$$

No Sign Problem

- However,

$$
\begin{equation*}
S_{x}^{1} S_{x}^{1}=\eta_{x} \eta_{x} S_{x}^{1} S_{x}^{1} \tag{11}
\end{equation*}
$$

- Thus it is as if our $H_{\text {int }}^{b}$ insertion is really

$$
\begin{equation*}
\sum_{x} h_{x} \eta_{x}\left(n_{x}-\frac{1}{2}\right) S_{x}^{1} \tag{12}
\end{equation*}
$$

No Sign Problem

- However,

$$
\begin{equation*}
S_{x}^{1} S_{x}^{1}=\eta_{x} \eta_{x} S_{x}^{1} S_{x}^{1} \tag{11}
\end{equation*}
$$

- Thus it is as if our $H_{\text {int }}^{b}$ insertion is really

$$
\begin{equation*}
\sum_{x} h_{x} \eta_{x}\left(n_{x}-\frac{1}{2}\right) S_{x}^{1} \tag{12}
\end{equation*}
$$

- And thus most generally the Ising model coupled with fermions

$$
\begin{align*}
H= & -t \sum_{\langle x y\rangle}\left(c_{x}^{\dagger} c_{y}+c_{y}^{\dagger} c_{x}\right)+V \sum_{\langle x y\rangle}\left(n_{x}-\frac{1}{2}\right)\left(n_{y}-\frac{1}{2}\right) \\
& \pm J \sum_{x y} S_{x}^{3} S_{y}^{3}-\sum_{x} n_{x}\left(n_{x}-\frac{1}{2}\right) S_{x}^{1} \tag{13}
\end{align*}
$$

has no sign problem for any h_{x}.

Model 2: The Heisenburg Antiferromagnet

- We add a bit more complexity to the spin section for this second model, considering

$$
\begin{align*}
H= & -t \sum_{\langle x y\rangle}\left(c_{x}^{\dagger} c_{y}+c_{y}^{\dagger} c_{x}\right)+V \sum_{\langle x y\rangle}\left(n_{x}-\frac{1}{2}\right)\left(n_{y}-\frac{1}{2}\right) \\
& +J \sum_{\langle x y\rangle}\left(\vec{S}_{x} \cdot \vec{S}_{y}-\frac{1}{4}\right)-\sum_{x} n_{x}\left(n_{x}-\frac{1}{2}\right) s_{x}^{1} \tag{14}
\end{align*}
$$

Model 2: The Heisenburg Antiferromagnet

- We add a bit more complexity to the spin section for this second model, considering

$$
\begin{align*}
H= & -t \sum_{\langle x y\rangle}\left(c_{x}^{\dagger} c_{y}+c_{y}^{\dagger} c_{x}\right)+V \sum_{\langle x y\rangle}\left(n_{x}-\frac{1}{2}\right)\left(n_{y}-\frac{1}{2}\right) \\
& +J \sum_{\langle x y\rangle}\left(\vec{S}_{x} \cdot \vec{s}_{y}-\frac{1}{4}\right)-\sum_{x} n_{x}\left(n_{x}-\frac{1}{2}\right) s_{x}^{1} \tag{14}
\end{align*}
$$

- This time we treat the spin piece H_{0}^{b} as an interaction piece. We call it H_{int}^{b}.

Model 2: The Heisenburg Antiferromagnet

- We add a bit more complexity to the spin section for this second model, considering

$$
\begin{align*}
H= & -t \sum_{\langle x y\rangle}\left(c_{x}^{\dagger} c_{y}+c_{y}^{\dagger} c_{x}\right)+V \sum_{\langle x y\rangle}\left(n_{x}-\frac{1}{2}\right)\left(n_{y}-\frac{1}{2}\right) \\
& +J \sum_{\langle x y\rangle}\left(\vec{S}_{x} \cdot \vec{s}_{y}-\frac{1}{4}\right)-\sum_{x} n_{x}\left(n_{x}-\frac{1}{2}\right) s_{x}^{1} \tag{14}
\end{align*}
$$

- This time we treat the spin piece H_{0}^{b} as an interaction piece. We call it $H_{\text {int }}^{b}$.
- The new $H_{\text {int }}$ is

$$
\begin{equation*}
H_{\mathrm{int}}=H_{\mathrm{int}}^{f}+H_{\mathrm{int}}^{b}+H_{\mathrm{int}}^{f b} . \tag{15}
\end{equation*}
$$

Antiferromagnetic Heisenburg Model

- How does $H_{\text {int }}^{b}$ affect the spin space?

Antiferromagnetic Heisenburg Model

- How does $H_{\text {int }}^{b}$ affect the spin space?
- For two nearest neighbors, x and y, using the basis states $(\uparrow \uparrow, \uparrow \downarrow, \downarrow \uparrow, \downarrow \downarrow)$, we have

$$
H_{\mathrm{int}, x y}^{b}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \tag{16}\\
0 & -J / 2 & J / 2 & 0 \\
0 & J / 2 & -J / 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Antiferromagnetic Heisenburg Model

- How does $H_{\text {int }}^{b}$ affect the spin space?
- For two nearest neighbors, x and y, using the basis states ($\uparrow \uparrow, \uparrow \downarrow, \downarrow \uparrow, \downarrow \downarrow)$, we have

$$
H_{\mathrm{int}, x y}^{b}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \tag{16}\\
0 & -J / 2 & J / 2 & 0 \\
0 & J / 2 & -J / 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

- At the infinitesimal level, we get for $e^{-\epsilon H}:(\uparrow \downarrow, \downarrow \uparrow)$

$$
\left(1+\frac{\epsilon J}{2}\right) \mathbb{1}-\frac{\epsilon J}{2}\left(\begin{array}{ll}
0 & 1 \tag{17}\\
1 & 0
\end{array}\right)
$$

Antiferromagnetic Heisenburg Model

- How does $H_{\text {int }}^{b}$ affect the spin space?
- For two nearest neighbors, x and y, using the basis states ($\uparrow \uparrow, \uparrow \downarrow, \downarrow \uparrow, \downarrow \downarrow)$, we have

$$
H_{\mathrm{int}, x y}^{b}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \tag{16}\\
0 & -J / 2 & J / 2 & 0 \\
0 & J / 2 & -J / 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

- At the infinitesimal level, we get for $e^{-\epsilon H}:(\uparrow \downarrow, \downarrow \uparrow)$

$$
\left(1+\frac{\epsilon J}{2}\right) \mathbb{1}-\frac{\epsilon J}{2}\left(\begin{array}{ll}
0 & 1 \tag{17}\\
1 & 0
\end{array}\right)
$$

- Therefore, every time the Hamiltonian flips a nearest neighbor spin pair, the overall matrix element takes on an extra minus sign.

Worldline Approach: With $H_{\mathrm{int}}^{\text {tb }}$ insertions

Contribution to $\langle\downarrow \uparrow \uparrow \downarrow \downarrow \uparrow| e^{-\left(\beta-t_{6}\right) H_{0}^{b}} S_{6}^{1} e^{-\left(t_{6}-t_{5}\right) H_{0}^{b}} S_{3}^{1} e^{-\left(t_{5}-t_{4}\right) H_{0}^{b}} S_{5}^{1}$

$$
\times e^{-\left(t_{4}-t_{3}\right) H_{0}^{b}} S_{1}^{1} e^{-\left(t_{3}-t_{2}\right) H_{0}^{b}} S_{4}^{1} e^{-\left(t_{2}-t_{1}\right) H_{0}^{b}} S_{1}^{1} e^{-t_{1} H_{0}^{b}}|\downarrow \uparrow \uparrow \downarrow \downarrow \uparrow\rangle
$$

- Now our insertions can hop before being annihilated.

Worldline Approach: With $H_{\mathrm{int}}^{\mathrm{fb}}$ insertions

Contribution to $\langle\downarrow \uparrow \uparrow \downarrow \downarrow \uparrow| e^{-\left(\beta-t_{6}\right) H_{0}^{b}} S_{6}^{1} e^{-\left(t_{6}-t_{5}\right) H_{0}^{b}} S_{3}^{1} e^{-\left(t_{5}-t_{4}\right) H_{0}^{b}} S_{5}^{1}$

$$
\times e^{-\left(t_{4}-t_{3}\right) H_{0}^{b}} S_{1}^{1} e^{-\left(t_{3}-t_{2}\right) H_{0}^{b}} S_{4}^{1} e^{-\left(t_{2}-t_{1}\right) H_{0}^{b}} S_{1}^{1} e^{-t_{1} H_{0}^{b}}|\downarrow \uparrow \uparrow \downarrow \downarrow \uparrow\rangle
$$

- Now our insertions can hop before being annihilated.
- Odd-even (even-odd) creationannihilation has odd number of hops. Odd-odd (even-even) creationannihilation has
 even number of hops.

Model 2: The Heisenburg Antiferromagnet

-What does this do for the overall sign?

Model 2: The Heisenburg Antiferromagnet

- What does this do for the overall sign?
- If we have an odd-even (even-odd) pair of $\left(n_{x}-1 / 2\right) S_{x}^{1}$ insertions, we get an extra negative sign from the bosonic sector.

Model 2: The Heisenburg Antiferromagnet

- What does this do for the overall sign?
- If we have an odd-even (even-odd) pair of $\left(n_{x}-1 / 2\right) S_{x}^{1}$ insertions, we get an extra negative sign from the bosonic sector.
- If we have an odd-odd (even-even) pair of $\left(n_{x}-1 / 2\right) S_{x}^{1}$ insertions, we have a positive sign from the bosonic sector.

Model 2: The Heisenburg Antiferromagnet

- What does this do for the overall sign?
- If we have an odd-even (even-odd) pair of $\left(n_{x}-1 / 2\right) S_{x}^{1}$ insertions, we get an extra negative sign from the bosonic sector.
- If we have an odd-odd (even-even) pair of $\left(n_{x}-1 / 2\right) S_{x}^{1}$ insertions, we have a positive sign from the bosonic sector.
- Thus again it is as if we are inserting: (unitary transformations can show this explicitly)

$$
\begin{equation*}
\sum_{x} h_{x} \eta_{x}\left(n_{x}-\frac{1}{2}\right) S_{x}^{1} \tag{18}
\end{equation*}
$$

Model 2: The Heisenburg Antiferromagnet

- What does this do for the overall sign?
- If we have an odd-even (even-odd) pair of $\left(n_{x}-1 / 2\right) S_{x}^{1}$ insertions, we get an extra negative sign from the bosonic sector.
- If we have an odd-odd (even-even) pair of $\left(n_{x}-1 / 2\right) S_{x}^{1}$ insertions, we have a positive sign from the bosonic sector.
- Thus again it is as if we are inserting: (unitary transformations can show this explicitly)

$$
\begin{equation*}
\sum_{x} h_{x} \eta_{x}\left(n_{x}-\frac{1}{2}\right) S_{x}^{1} \tag{18}
\end{equation*}
$$

- The antiferromagnet coupled with fermions has no sign problem in the CT-INT expansion.

Model 3: \mathbb{Z}_{2} Gauge Theory

- We can extend the these ideas to gauge theories. A simple example:

$$
\begin{align*}
H= & -t\left(\sum_{\langle x y\rangle} c_{x}^{\dagger} \sigma_{x y}^{3} c_{y}+c_{y}^{\dagger} \sigma_{x y}^{3} c_{x}\right)-h \sum_{\langle x y\rangle} \sigma_{x y}^{1} \tag{19}\\
& +\sum_{\text {plaquettes }} \sigma_{a}^{3} \sigma_{b}^{3} \sigma_{c}^{3} \sigma_{d}^{3}
\end{align*}
$$

Model 3: \mathbb{Z}_{2} Gauge Theory

- We can extend the these ideas to gauge theories. A simple example:

$$
\begin{align*}
H= & -t\left(\sum_{\langle x y\rangle} c_{x}^{\dagger} \sigma_{x y}^{H_{0}^{3} c_{y}}+c_{y}^{\dagger} \sigma_{x y}^{3} c_{x}\right)-h \sum_{\langle x y\rangle} \sigma_{x y}^{1} \tag{19}\\
& +\sum_{\text {plaquettes }} \sigma_{a}^{3} \sigma_{b}^{3} \sigma_{c}^{3} \sigma_{d}^{3}
\end{align*}
$$

- Here, $H_{0}^{\text {fb }}$ is the free part, coming from the covariant derivative:

Model 3: \mathbb{Z}_{2} Gauge Theory

- We can extend the these ideas to gauge theories. A simple example:

$$
\begin{aligned}
H= & -t\left(\sum_{\langle x y\rangle} c_{x}^{\dagger} \sigma_{x y}^{3} c_{y}+c_{y}^{\dagger} \sigma_{x y}^{3} c_{x}\right)-h \sum_{\langle x y\rangle} \stackrel{\sigma_{x y}^{1}}{H_{\mathrm{int}}^{b}} \\
& +\sum_{\text {plaquettes }} \sigma_{a}^{3} \sigma_{b}^{3} \sigma_{c}^{3} \sigma_{d}^{3}
\end{aligned}
$$

- $H_{i n t}^{b}$ is a field in the x-direction.

Model 3: \mathbb{Z}_{2} Gauge Theory

- We can extend the these ideas to gauge theories. A simple example:

$$
\begin{align*}
& H=-t\left(\sum_{\langle x y\rangle} c_{x}^{\dagger} \sigma_{x y}^{3} c_{y}+c_{y}^{\dagger} \sigma_{x y}^{3} c_{x}\right)-h \sum_{\langle x y\rangle} \sigma_{x y}^{1} \tag{19}\\
&+\sum_{\text {plaquettes }} \sigma_{a}^{3} \sigma_{b}^{3} \sigma_{c}^{3} \sigma_{d}^{3} \\
& H^{p}
\end{align*}
$$

- H^{p} is a sum over plaquettes.

Model 3: \mathbb{Z}_{2} Gauge Theory

- We can extend the these ideas to gauge theories. A simple example:

$$
\begin{align*}
H= & -t\left(\sum_{\langle x y\rangle} c_{x}^{\dagger} \sigma_{x y}^{3} c_{y}+c_{y}^{\dagger} \sigma_{x y}^{3} c_{x}\right)-h \sum_{\langle x y\rangle} \sigma_{x y}^{1} \tag{19}\\
& +\sum_{\text {plaquettes }} \sigma_{a}^{3} \sigma_{b}^{3} \sigma_{c}^{3} \sigma_{d}^{3}
\end{align*}
$$

- Invariant under $G_{x}^{\dagger} c_{x} G_{x}=-c_{x}, G_{x}^{\dagger} \sigma_{x_{n}}^{1} G_{x} \rightarrow=\sigma_{x_{n}}^{1}$, and $G_{x}^{\dagger} \sigma_{x_{n}}^{3} G_{x}=-\sigma_{X_{n}}^{3}$, where $G_{x}=\sigma_{x_{1}}^{1} \sigma_{x_{2}}^{1} \sigma_{x_{3}}^{1} \sigma_{x_{4}}^{1} \eta_{x}\left(2 n_{x}-1\right)$

Model 3: \mathbb{Z}_{2} Gauge Theory

- We can extend the these ideas to gauge theories. A simple example:

$$
\begin{align*}
H= & -t\left(\sum_{\langle x y\rangle} c_{x}^{\dagger} \sigma_{x y}^{3} c_{y}+c_{y}^{\dagger} \sigma_{x y}^{3} c_{x}\right)-h \sum_{\langle x y\rangle} \sigma_{x y}^{1} \tag{19}\\
& +\sum_{\text {plaquettes }} \sigma_{a}^{3} \sigma_{b}^{3} \sigma_{c}^{3} \sigma_{d}^{3}
\end{align*}
$$

- Spinful fermionic version considered by (Gazit, Randeria, Vishwanath (2016)), so there is interest in such models.
Charged fermions coupled to \mathbb{Z}_{2} gauge fields: Superfluidity, confinement and emergent Dirac fermions.

Snir Gazit, ${ }^{1}$ Mohit Randeria, ${ }^{2}$ and Ashvin Vishwanath ${ }^{1,3}$
${ }^{1}$ Department of Physics, University of California, Berkeley, CA 94720, USA
${ }^{2}$ Department of Physics, The Ohio State University, Columbus, OH 43210
${ }^{3}$ Department of Physics, Harvard University, Cambridge MA 02138, USA
(Dated: July 15, 2016)

\mathbb{Z}_{2} Gauge Theories

- We again use CT-INT. \hat{P} enforces the Gauss's Law constraint.

$$
\begin{align*}
Z & =\sum_{\{k\}}(-1)^{k} \operatorname{Tr}\left(\hat{P} e^{-\left(\beta-t_{1}\right) H_{0}} H_{\mathrm{int}} e^{-\left(t_{1}-t_{2}\right) H_{0}} H_{\mathrm{int}} \ldots H_{\mathrm{int}} e^{-t_{k} H_{0}}\right) \\
& =\sum_{\{k\}}(-1)^{k} \operatorname{Tr}\left(\hat{P} e^{-\left(\beta-t_{1}\right)\left(H_{0}^{f b}+H^{p}\right)} H_{\mathrm{int}}^{b} \ldots H_{\mathrm{int}}^{b} e^{-t_{k}\left(H_{0}^{f b}+H^{p}\right)}\right) \tag{20}
\end{align*}
$$

\mathbb{Z}_{2} Gauge Theories

- We again use CT-INT. \hat{P} enforces the Gauss's Law constraint.

$$
\begin{align*}
Z & =\sum_{\{k\}}(-1)^{k} \operatorname{Tr}\left(\hat{P} e^{-\left(\beta-t_{1}\right) H_{0}} H_{\mathrm{int}} e^{-\left(t_{1}-t_{2}\right) H_{0}} H_{\mathrm{int}} \ldots H_{\mathrm{int}} e^{-t_{k} H_{0}}\right) \\
& =\sum_{\{k\}}(-1)^{k} \operatorname{Tr}\left(\hat{P} e^{-\left(\beta-t_{1}\right)\left(H_{0}^{f b}+H^{p}\right)} H_{\mathrm{int}}^{b} \ldots H_{\mathrm{int}}^{b} e^{-t_{k}\left(H_{0}^{f b}+H^{p}\right)}\right) \tag{20}
\end{align*}
$$

- Now we cannot factor into separate fermionic and spin factors, but we can use z-basis to replace spin operators with numbers.

\mathbb{Z}_{2} Gauge Theories

- We again use CT-INT. \hat{P} enforces the Gauss's Law constraint.

$$
\begin{align*}
Z & =\sum_{\{k\}}(-1)^{k} \operatorname{Tr}\left(\hat{P} e^{-\left(\beta-t_{1}\right) H_{0}} H_{\text {int }} e^{-\left(t_{1}-t_{2}\right) H_{0}} H_{\mathrm{int}} \ldots H_{\mathrm{int}} e^{-t_{k} H_{0}}\right) \\
& =\sum_{\{k\},\{s\}}(-1)^{k} \operatorname{Tr}_{f}\left(\hat{P}_{f} e^{-\left(\beta-t_{1}\right) H_{0}^{f}\left(s_{1}\right)} \ldots e^{-t_{k} H_{0}^{f}\left(s_{k}\right)}\right) \tag{20}
\end{align*}
$$

- Now we cannot factor into separate fermionic and spin factors, but we can use z-basis to replace spin operators with numbers.

\mathbb{Z}_{2} Gauge Theories

- We again use CT-INT. \hat{P} enforces the Gauss's Law constraint.

$$
\begin{align*}
Z & =\sum_{\{k\}}(-1)^{k} \operatorname{Tr}\left(\hat{P} e^{-\left(\beta-t_{1}\right) H_{0}} H_{\text {int }} e^{-\left(t_{1}-t_{2}\right) H_{0}} H_{\text {int }} \ldots H_{\text {int }} e^{-t_{k} H_{0}}\right) \\
& =\sum_{\{k\},\{s\}}(-1)^{k} \operatorname{Tr}_{f}\left(\hat{P}_{f} e^{-\left(\beta-t_{1}\right) H_{0}^{f}\left(s_{1}\right)} \ldots e^{-t_{k} H_{0}^{f}\left(s_{k}\right)}\right) \tag{20}
\end{align*}
$$

- Now we cannot factor into separate fermionic and spin factors, but we can use z-basis to replace spin operators with numbers.

\mathbb{Z}_{2} Gauge Theories

- We again use CT-INT. \hat{P} enforces the Gauss's Law constraint.

$$
\begin{align*}
Z & =\sum_{\{k\}}(-1)^{k} \operatorname{Tr}\left(\hat{P} e^{-\left(\beta-t_{1}\right) H_{0}} H_{\mathrm{int}} e^{-\left(t_{1}-t_{2}\right) H_{0}} H_{\mathrm{int}} \ldots H_{\mathrm{int}} e^{-t_{k} H_{0}}\right) \\
& =\sum_{\{k\},\{s\}}(-1)^{k} \operatorname{Tr}_{f}\left(\hat{P}_{f} e^{-\left(\beta-t_{1}\right) H_{0}^{f}\left(s_{1}\right)} \ldots e^{-t_{k} H_{0}^{f}\left(s_{k}\right)}\right) \tag{20}
\end{align*}
$$

- Now we cannot factor into separate fermionic and spin factors, but we can use z-basis to replace spin operators with numbers.
- Using a Majorana transformation we can confirm that the fermionic part has no sign problem either. (Li, Jiang, Yao PRB (2015)), (Wang, lazzi, Corboz, Troyer PRL (2015)), (Wei, Wu, Li, Zhang, Xiang, PRL (2016)), (Li, Jiang, Yao, 1601.05780).

Conclusions

- We can now solve a variety of models involving interacting fermions and spins using the $C T$-INT formalism (in continuous or discrete time).

Conclusions

- We can now solve a variety of models involving interacting fermions and spins using the $C T$-INT formalism (in continuous or discrete time).
- The CT-INT formalism also plays well with other techniques, such as the Meron Cluster method.

Conclusions

- We can now solve a variety of models involving interacting fermions and spins using the $C T$-INT formalism (in continuous or discrete time).
- The CT-INT formalism also plays well with other techniques, such as the Meron Cluster method.
- We can also apply these techniques to simple gauge theories, such as the \mathbb{Z}_{2} gauge theory we have shown here.

