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B ab-initio calculations of hadron-hadron scattering can be performed on the
discretized Fuclidean space-time in finite volume

B In the single channel case - Liischer approach Lischer (1991)

» For fixed L and P each energy level — scattering phase in the infinite volume
» The finite-volume corrections to the scattering phase are exponentially
suppressed
» Mass and width of the resonances are extracted from the measured phase
~ analytical behavior of the scattering has to be known (UChPT,...)

B Multiple two-particle channels - coupled channel Liischer equation
Lage, Meifiner, Rusetsky (2009), Hansen, Sharpe (2012), ...

» more unknowns than measurements at a single energy
» phenomenological parameterizations inevitable (eff.-range exp., K-Matrix...)
Hadron Spectrum Collaboration (2014-2016)

B Three- or more-particle states Polejaeva, Rusetsky (2012) Hansen, Sharpe (2014)

» hardly applicable for the data analysis (at the moment!)
» phenomenological parametrization unclear (at the moment!)
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Q But, do we need to resolve into individual channels at all?

» In continuum, effects of any inelastic channels can be included via optical
potential Feshbach (1958), Kerman, McManus, Thaler (1959)
» Example: 7r scattering (Ny = 2)

> above 4r-threshold 7w and w7 states contribute to inelasticity

K=

4-pion state complex potential

= mm-scattering amplitude is a single-channel equation w.r.t the optical
potential

Q Can we extract such complex valued potential from a set of real energy
eigenvalues measured in finite volume?

= YES - this work.
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Scattering in the infinite volume

B S-Matrix describes scattering experiments. It is related to the scattering amplitude
T via
S=1-1T
B Two-particle scattering amplitude can be parametrized by the K-Matrix. Let us
start from two two-particle states: KK and 7n in S-wave

1

TP = —
K-1— ZDZ(lg{pKf(vpﬂ'n}

- general derivation requires Feshbach projection operator technique
Feshbach (1958), ADMMR (2016)

B If we are interested in K K scattering (primary channel) then
1

T 7 jo — T
KRS KR = WIE) — ik

M

M7r7]~>7r'r, - ipﬂ"r]

-1 K—
for W =Mrgg_ ki — A

- M := K~ is smooth, although K can have poles for E € R
- W € C contains all inelasticities from the secondary channels and
determines the scattering amplitude in this channel!!!
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Scattering in the finite volume

What is measured in a Lattice simulation?

mo

Periodic boundary conditions lead to modification of the loop functions:

. 2 2 pL
— —— Zoo(1; f ==
T 00(1;¢") for ¢ = 5~
- The unitarity cut becomes a set of poles on the real axis
B Energy eigenvalues (E*) measured on the lattice are energies, for which
T Y(E*)=0or

2 2 * * ?(I?—M‘r (E*)
2 Zoo(1; %2 (E)) = My e (B") — u
/L 00(1; gk (E7)) kE-KkR(E) Moy mn(E*) — \/%L Zoo(1; 42, (E*))
= for every E*: H/El(E*) = ﬁ ZOO(LQ?{R(E*)) [N cot (pseudophase)]

Q How can we retrieve the infinite volume potential?

B Simple lim;,_, W;l is not well defined
— adiabatic switching of the interaction < E — E + i€ Delitt (1956)

W YE) = lim lim_ Wi (B + ie)
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Step-by-step program

B The input from a lattice simulation (L and P fixed)
E1

(ng(EI) \fL Zoo(1; qKK (EY))

Step 1. The functional behavior of W, ' (E) is governed
by simple poles + some background

. Z;
Wi '(B) =Y = + Do+ DiE+ D:E* + D3 E°

i

Step 2. Perform analytic continuation to the complex
plane ~~ oscillations

Step 3. L — oo limit obtained after “smoothing® over
the oscillations

Step 4. Perform limit € — 0
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Test of the framework - fit

B UChPT Ansatz to produce synthetic data for the 7n-K K system.  oiler, oset (1997)
Fairly large energy range: E = 2Mx...1.7 GeV, L = 5M ;!

Step 1: fit. Do we have enough data to fit W, '(E)?
In the given range ~ 30 energy levels are accessible,
but W, '(E) has around 36 free parameters: Y;, Z;, D;

B Levels from lattices of different sizes or reference frames cannot be combined
directly

B For certain systems twisted boundary conditions is helpful: Bedaque, Chen (2005)
Twist only the u- and d-quarks by an angle 0

> Zoo(l;qfﬂ—{) — Zgo(l;qi}—{) ?scan function”
> Zoo(1; qgm) remains = intrinsic properties of the system unchanged
» Very economical, if partial twisting can be used  agadjanov, Meisner, Rusetsky (2014)

B For six twisting angles 189 energy eigenvalues can (in principle) be obtained

If you think this is too much, call it 26 per 100 MeV
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Test of the framework - fit

B Realistic simulations have error bars on the energy eigenvalues: AE

» The error bars on Z§,(1; qfﬂ—((E)) are inclined = what is proper x3 7
» In an NLO expansion around the central value
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Test of the framework - smoothing

-1

Step 2: analytical continuation. W, '(E) — W, '(E + ie)
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Test of the framework - smoothing

Step 3: L — oo limit. Many algorithms exist to smooth over unwanted
oscillations.

» Non-parametric method - Gaussian smearing:
Replace any point of a uniformly distributed data by the weighted (eXp(fQTi;))
average over its neighboring points within the radius .
» Parametric method:
Fit a general Ansatz, which respects analytical properties. Suppress
oscillations, minimizing the modulus of second derivative.
> Model selection via LASSO method and cross validation

Tibshirani (1996), Ozaki, Sasaki (2013)

Step 4: ¢ — 0 limit. Gives the infinite volume optical potential!

i

ECALL: R f(B)=1— ————
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Test of the framework - results

B Repeat the program for re-sampled lattice data sets (~ 1000). Estimate the 1o and
20 bands.
» For AE =1 MeV on the energy eigenvalues
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Different smoothing methods lead to the same results

Uncertainty grows mostly linear with AF

RWY(E)) is quite stable

I(W™H(E)) is more sensitive, especially when fit misses some poles

vyvyy
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Summary and outlook

DONE

B A theoretical framework for the extraction of the optical (complex valued)
potential from the energy spectrum of LQCD is formulated

B Test on synthetic data reveals possible complications — solutions are suggested:

» use (partially) twisted b.c. to raise the number of extracted energy eigenvalues
» smoothing methods
» realistic uncertainty determination

TO DO
B Test on the real lattice data for ¢*(D =1 + 1) theory is in preparation
B Application to systems with three-particle intermediate channels is highly tempting

B Similarly, exotic states Z.(3900) or Z.(4025) can be studied
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THANK YOU!
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