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Motivation
Beautiful recent progress within AdS/CFT: for relevant gauge theory observables
as Wilson loops and anomalous dimensions of local operators
(i.e. minimal surfaces and energies of string states),
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exact results can be obtained

I from integrability (assumed)
I from supersymmetric localization (BPS observable)

In the world-sheet string theory integrability only classically, localization not formulated.

super Yang-Mills in 4d
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where partial derivatives act on any term on the right, and we recall
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4 lattice talk

N = 4 (4.1)

� � 1 (4.2)

� ⌧ 1 (4.3)
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Framework
AdS/CFT, string/gauge correspondence, addresses together

I understanding gauge theories at all values of the coupling
I understanding string theories in non-trivial backgrounds
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ẋµ

+�

i

ẏi
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Type IIB strings in  

Non-linear sigma models for AdS/CFT

Strings in AdS5 ⇥ S5

Non-linear sigma model
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Gauge/string correspondence
Main merit: allows studying regimes not accessible via standard analytical tools.
Beautiful recent progress within AdS/CFT: for relevant gauge theory observables
as Wilson loops (i.e. minimal string surfaces)
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exact results can be obtained

I from integrability (assumed)
I from supersymmetric localization (BPS observable)

In the world-sheet string theory integrability only classically, localization not formulated.
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Motivation

Talks by Shaich, Giedt, Anosh
Lattice for world-sheet superstring in AdS

5

⇥ S5

Features:
I 2d: computationally cheap
I no supersymmetry (only as flavour symmetry, Green-Schwarz)
I all gauge symmetries are fixed (no formulation à la Wilson),

only scalar fields (some of which anti-commuting)
Non-trivial 2d qft with strong coupling analytically known,
finite-coupling (numerical) prediction.
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Motivation
Beautiful progress in obtaining exact results within AdS/CFT

I from integrability (assumed)
I from supersymmetric localization (BPS observable)

In the world-sheet string theory integrability only classically, localization not formulated.

Superstrings in AdS5 ⇥ S5 with RR fluxes: complicated interacting 2d field theory
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under control perturbatively (and with some caveats).

Is there a genuine 2d QFT way
to cover the finite-coupling region?
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f(�) = � a0 + �2 a1 + · · · (4.6)
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Integrability
/ Localization

see the SO(6) symmetry transformations. It is a non-trivial check of the code, the code has

to respect the symmetry!

G5 plays the same role of �5 in QCD. It is a matrix that squares to 1, has determinant 1,

is hermitian or antihermitian itself has eigenvalues ±1 5.

We start with the lagrangean in [Giombi]

—–

f(�) = a�+ b�2 + · · · (5.1)

f(�) = c
p
�+ d+ e

1p
�
+ · · · (5.2)

5If it squares to 1 means it has eigenvalues +1 and �1. If it is diagonalizable (condition necessary and

su�cient to be diagonalizable is that it commutes with the adjoint, and here this condition is ensured by the

fact that it is hermitian or antihermitian, and thus since it certainly commutes with itself, which is + or minus

the adjoint, it is diagonalizable) and it’s traceless, then the +1 and �1 eigenvalues are exactly equal in number.
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gauge theory

Perturbative 
string sigma model 

Motivation
Beautiful progress in obtaining exact results within AdS/CFT

I from integrability (assumed)
I from supersymmetric localization (BPS observable)

In the world-sheet string theory integrability only classically, localization not formulated.

Superstrings in AdS5 ⇥ S5 with RR fluxes: complicated interacting 2d field theory
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under control perturbatively (and with some caveats).

Is there a genuine 2d QFT way
to cover the finite-coupling region?
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4 lattice talk

� (4.1)

5

Perturbative 
string sigma model 

Perturbative
gauge theory

� ⌧ 1 (4.4)

f(�) =
p
� b0 + b1 +

1p
�
b2 + · · · (4.5)

f(�) = � a0 + �2 a1 + · · · (4.6)

6

Integrability
/ Localization

see the SO(6) symmetry transformations. It is a non-trivial check of the code, the code has

to respect the symmetry!

G5 plays the same role of �5 in QCD. It is a matrix that squares to 1, has determinant 1,

is hermitian or antihermitian itself has eigenvalues ±1 5.

We start with the lagrangean in [Giombi]

—–

f(�) = a�+ b�2 + · · · (5.1)

f(�) = c
p
�+ d+ e

1p
�
+ · · · (5.2)

5If it squares to 1 means it has eigenvalues +1 and �1. If it is diagonalizable (condition necessary and

su�cient to be diagonalizable is that it commutes with the adjoint, and here this condition is ensured by the

fact that it is hermitian or antihermitian, and thus since it certainly commutes with itself, which is + or minus

the adjoint, it is diagonalizable) and it’s traceless, then the +1 and �1 eigenvalues are exactly equal in number.
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Perturbative 
string sigma model Motivation

Superstrings in AdS backgrounds with RR fluxes: complicated interacting 2d field
theory under control perturbatively (and with caveats).

Need of genuine 2d QFT to cover the finite-coupling region.

Lattice techniques in AdS/CFT: see talks by Hanada, Catterall, Filev):
exciting program on the 4d susy CFT side.



Motivation

Superstrings in AdS backgrounds with RR fluxes: complicated interacting 2d field
theory under control perturbatively (and with caveats).

Need of genuine 2d QFT to cover the finite-coupling region.

Lattice techniques in AdS/CFT:
(next talk! Berkowitz)
exciting program on the 4d susy CFT side,
subtleties with supersymmetry.

Motivation

Talks by Shaich, Giedt, Anosh
Lattice for superstring world-sheet in AdS

5

⇥ S5

Features:
I 2d: computationally cheap
I no supersymmetry (only as flavour symmetry, Green-Schwarz)
I all gauge symmetries are fixed (no formulation à la Wilson),

only scalar fields (some of which anti-commuting)
Non-trivial 2d qft with strong coupling analytically known,
finite-coupling (numerical) prediction.
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Lattice 4d  
N=4 SYM 

Framework

String/gauge correspondence, addresses together
I understanding gauge theories at all values of the coupling
I understanding string theories in non-trivial backgrounds
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Motivation
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5
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I all gauge symmetries are fixed (no formulation à la Wilson),
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Non-trivial 2d qft with strong coupling analytically known,
finite-coupling (numerical) prediction.

[previous study: Roiban McKeown 2013]
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String/gauge correspondence, addresses together
I understanding gauge theories at all values of the coupling
I understanding string theories in non-trivial backgrounds
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The cusp anomaly of N = 4 SYM from string theory

Completely solved via integrability.

Expectation value of a light-like cusped Wilson loop

hW [Ccusp]i ⇠ e
�f(g)� ln

LIR
✏UV

Zcusp =

Z
[D�X][D�✓] e�SIIB(Xcusp+�X,�✓)

= e��eff ⌘ e�f(g)V2

String partition function with “cusp” boundary conditions, evaluated perturbatively
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RM could guarantee that what they plotted is f(g) only because (as referred by

Roiban) they could compare with the strong coupling results in (1.6), as in Table 2

(again, at small g the agreement is far from being good, see Table 3).

• The background here is not the trivial one. There is also in principle no guarantee that

the cusp solution - which is a saddle point - also represents a minimum. That is why

(referring to Figure 1) starting with a lower value [as Mattia did] it could mean that

one encounters other states with lower energy and does not thermalizes to the state one

hope for, but to another one with lower energy. Again, it is only because EM had a

good fit with (1.6) that they were sure it was the cusp they were calculating.

2 Remarks

• [Roiban email:] The quantity that is of interest (here) is the log of the partition func-

tion which is also the e↵ective action. The way the calculation proceeds, one generates

classical field configurations and then randomly accepts of rejects them. For each of

the accepted ones one should evaluate e�S

and then average them and take the log. So

for each data point, computing lnZ or S is the same. The potential issue related to

averaging. The fact that the field configurations that are generated are distributed on

a gaussian says that no matter what function that is evaluated on them, the result will

also be distributed on a Gaussian. Since the log is a monotonic function, if the errors

3
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Linearization

The relevant (gauge-fixed) action has quartic fermionic interactions

To formally integrate out Graßmann-odd fields, P [�i] =
e�S
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Green-Schwarz string in the null cusp background
After linearization the Lagrangian reads (m ⇠ P
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I 8 bosonic coordinates: x, x⇤, zM (M = 1, · · · , 6), z =

p
zMzM ;

I 7 auxiliary fields �, �M (M = 1, · · · , 6));
I 8 fermionic variables,  ⌘ (✓i, ✓i, ⌘i, ⌘i), and ✓i = (✓i)†, ⌘i = (⌘i)†, i = 1, 2, 3, 4

transforming in the fundamental of SU(4)

and ⇢M are off-diagonal blocks of SO(6) Dirac matrices �M ⌘
✓

0 ⇢†M
⇢M 0

◆
.

Manifest global symmetry is SO(6)⇥ SO(2).

question being whether the latter is treatable via standard reweighting. Below we will see

that this is not the case for small values of g, suggesting that a di↵erent setting (alternative

linearization) should be provided to explore the full nonperturbative region.

After the transformation (2.5), the Lagrangian reads
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Notice that (2.7) and the integration measure involve only the field  and not its complex

conjugate 11, thus formally integrating out generates a Pfa�an Pf OF rather than a determi-

nant. In order to enter the Boltzmann weight and thus be interpreted as a probability, Pf OF

should be positive definite. For this reason, we proceed as in [33]

Z

D e�
R

dtds TOF = Pf OF ⌘ (detOF O†
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1

4 =
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D⇠D⇠̄ e�
R
dtds ¯⇠(O
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where the second equivalence obviously ignores potential phases or anomalies.

3 Discretization and lattice perturbation theory

In order to investigate the lattice model corresponding to (2.7), we introduce a two-dimensional

grid with lattice spacing a. We assign the values of the discretised (scalar) fields to each

lattice site, with periodic boundary conditions for all the fields except for antiperiodic tem-

poral boundary conditions in the case of fermions. The discrete approximation of continuum

derivatives are finite di↵erence operators defined on the lattice. While this works well for the

bosonic sector, a Wilson-like lattice operator must be introduced such that fermion doublers

are suppressed. Due to the rather non-trivial structure of the Dirac-like operator in (2.8)

there are in principle many possible ways of introducing a Wilson-like operator. An optimal

discretization should preserve all the symmetries of the continuum action and should lead

to lattice perturbative calculations reproducing, in the a ! 0 limit, the continuum behavior

(2.3). Furthermore, in order not to prevent Montecarlo simulations the discretization should

11The vector  in (2.7) collects the 8 complex ✓ and ⌘ in a formally “redundant” way which includes both

the fields and their complex conjugates. Explicitating real and imaginary parts of ✓, ⌘, it is easy to see that the

fermionic contribution coming from this 16⇥16 complex operator O
F

is then the one of 16 real anti-commuting

degrees of freedom.
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Discretization and lattice perturbation theory

A naive discretization pµ ! �
pµ ⌘ 1

a
sin(a pµ) leads to fermion doublers,

i.e. identical propagator at 2d points: (0, 0), (⇡
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F such that
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I No (additional) complex phase is introduced
I For a ! 0 continuum perturbation theory is reproduced
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value of ai and bi. Therefore we choose to break U(1) symmetry and introduce the following

Wilson-like lattice operator
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The analogue of (3.4) reads now
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(3.10)

and can be used together with its bosonic counterpart – obtained via the naive replacement
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and the integral above has been obtained rescaling the momenta with the lattice spacing and
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detOF
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    It preserves the SO(6) global symmetry, breaks the SO(2). 

Green-Schwarz string in the null cusp background

After linearization the Lagrangian reads (m ⇠ P
+
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I 8 bosonic coordinates: x, x⇤, zM (M = 1, · · · , 6), z =

p
zMzM ;

I 7 auxiliary fields �, �M (M = 1, · · · , 6));
I 8 fermionic variables,  ⌘ (✓i, ✓i, ⌘i, ⌘i), and ✓i = (✓i)†, ⌘i = (⌘i)†, i = 1, 2, 3, 4

and ⇢M are off-diagonal blocks of SO(6) Dirac matrices �M ⌘
✓

0 ⇢†M
⇢M 0

◆
.

Manifest global symmetry is SO(6)⇥ SO(2).
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    Does not induce (additional) complex phases:



The simulation: parameter space

I In the continuum model there are two parameters, g =

p
�

4⇡
and m ⇠ P

+

.
In perturbation theory divergences cancel, dimensionless quantities are
pure functions of the (bare) coupling

F = F (g)

I Our discretization cancels (1-loop) divergences, and reproduces the 1-loop
cusp anomaly. Assume it is true nonperturbatively, for lattice regularization.

Only additional scale: lattice spacing a.

Three dimensionless (input) parameters:

g , N ⌘ L

a
, M ⌘ ma

Therefore
F
LAT

= F
LAT

(g,N,M)



Line of constant physics

In the continuum, “effective” masses undergo a finite renormalization

m2
x(g) =

m2

2

⇣
1� 1

8 g
+O(g�2

)

⌘
(?)

The dimensionless physical quantity to keep constant when a ! 0 is

L2 m2
x = const , leading to (Lm)

2 ⌘ (NM)

2
= const ,

if (?) is still true on the lattice and g is not (infinitely) renormalized.



Continuum limit a ! 0

We assume that, on the lattice, no further scale but a is present.

A generic observable

FLAT = FLAT(g,N,M) = F (g) +O
⇣
1

N

⌘
+O

⇣
e�MN

⌘

where

g =

p
�

4⇡
, N =

L

a
, M = am .

Recipe:

I fix g

I fix MN , large enough so to to keep small finite volume effects
I evaluate FLAT for N = 6, 8, 10, 12, 16, · · ·
I obtain F (g) extrapolating to N ! 1.



Simulation: mass of x bosons

From the correlator of the x fields

Cx(t) =

X

s1, s2

hx(t, s1)x⇤
(0, s2)i

= c0 e
�tm

xLAT
+ . . .

extract the x-mass

mxLAT= lim

T, t!1
me↵

x

⌘ lim

T, t!1,

1

a
log

Cx(t; 0)

Cx(t+ a; 0)

No infinite renormalization occurring, no need of tuning m to adjust for it.
This corroborates our choice of line of constant physics.
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Figure 2: Correlator Cx(t) =
P

s
1

,s
2

hx(t, s
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)x⇤(0, s
2

)i of bosonic fields x, x⇤ (left panel) and

corresponding e↵ective mass me↵

x = 1

a ln
C

x

(t)
C

x

(t+a) normalized by m2 (right panel), plotted

as functions of the time t in units of mx
LAT

for di↵erent g and lattice sizes. The flatness

of the e↵ective mass indicates that the ground state saturates the correlation function, and

allows for a reliable extraction of the mass of the x-excitation. Data points are masked by

large errorbars for time scales greater than unity because the signal of the correlator degrades

exponentially compared with the statistical noise.

On the lattice, the physical mass mx
LAT

is usefully obtained as a limit of an e↵ective mass

me↵

x , defined at a given timeslice extension T and fixed timeslice pair (t, t+a) by the discretized

logarithmic derivative of the timeslice correlation function (4.5) at zero momentum

mx
LAT

= lim
T, t!1

me↵

x ⌘ lim
T, t!1,

1

a
log

Cx(t; 0)

Cx(t+ a; 0)
(4.8)

Figure 2 shows the e↵ective mass measured from (4.8) as a function of the time t in units

of mx
LAT

for di↵erent g and lattice sizes. To reduce uncertainty about the saturation of the

ground state in the correlation function - in (4.7), corrections to the limit are proportional to

e��E t, where �E is the energy splitting with the nearest excited state – in our simulations

the lattice temporal extent T is always twice the spatial extent L. The flatness of the e↵ective

mass in Fig. 2 (right) indicates that the ground state saturates the correlation function, and

allows for a reliable extraction of the mass of the x-excitation. Data points are masked by large

errorbars for time scales greater than unity because the signal in (4.8) degrades exponentially

compared with the statistical noise. Our simulations provide an estimate for the x mass,

m2

x/m
2 = 1

2

that appears to be consistent with the classical, large g prediction (2.4). We do

not see a clear signal yet for the expected bending down at smaller g. For decreasing couplings

simulations become compute-intensive and to obtain smaller errors longer/parallel runs would

be necessary.

The most important corollary of the analysis for the hxx⇤i correlator is the following. As

it happens in the continuum, also in the discretized setting there appears to be no infinite

renormalization occurring for (2.4), and thus no need of tuning the bare parameter m to
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Measure I: mass of x boson
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No infinite renormalization occurring, no need of tuning m to adjust for it.
This corroborates our choice of line of constant physics.



Simulation: the cusp action
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Figure 4: Left panel: Plots of hS
LAT

i
2N2

, where fits (dashed lines) to data points are linear in

1/N2. To ensure better visibility of the fits at di↵erent g values, ln g has been added. The

extrapolation to the continuum limit (symbol at infinite N) determines the coe�cient c/2 of

the divergent (⇠ N2) contribution in (4.9)-(4.10) and is represented in the diagram of the

right of this figure. Right panel: Data points estimate the continuum value of c/2 as from

the extrapolations of the linear fits above. The simulations at g = 30, mL = 6 (orange point)

are used for a check of the finite volume e↵ects, which appear here to be visible. Dashed and

dotted lines are the results of, respectively, a linear fit in 1/g and a fit to a polynomial of

degree two.

fits in Fig. 4, left, respectively 17 – consistently with the number 15 = 8 + 7 of bosonic fields

appearing in the path integral. Namely, such a contribution to the vev hSi = �@ lnZ/@ ln g in

(4.9), field-independent and proportional to the lattice volume, is simply counting the number

of degrees of freedom which appear quadratically, and multiplying g, in the action. Indeed,

for very large g the theory is quadratic in the bosons 18 and equipartition holds, namely

integration over the bosonic variables yields a factor proportional to g�
(2N

2

)

2 for each bosonic

field species 19.

Having determined with good precision the coe�cient of the divergence, we can proceed

first fixing it to be exactly c = 15 and subtracting from hS
LAT

i the corresponding contribution.
Having in mind an analysis at finite g, we perform simulations in order to determine the ratio

hSLAT i � c
2

(2N2)

S
0

⌘ f 0(g)
LAT

4
. (4.10)

On the right hand side we restored the general definition (1.3), which is the main aim of our

17Recall that in Fig. 4 ln g has been added to ensure better visibility of the fits at di↵erent g values.
18In lattice codes, it is conventional to omit the coupling form the (pseudo)fermionic part of the action, since

this is quadratic in the fields and hence its contribution in g can be evaluated by a simple scaling argument.
19It is interesting to mention that in theories with exact supersymmetry this constant contribution of the

bosonic action (this time on the trivial vacuum) is valid at all orders in g, due to the coupling constant

independence of the free energy. For twisted N = 4 SYM this is the origin of the supersymmetry Ward

identity S
bos

= 9N2/2 per lattice site, one of the observables used to measure soft supersymmetry breaking,

see [63]. We thank David Schaich and Andreas Wipf for pointing this out to us.

17
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Measure II: the cusp action

Subtract divergences, assume g = ↵ gc: then from f 0
(g) = f 0

(gc)c is gc = 0.04g.

.
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Figure 5: Plot of the ratio
hS

LAT

i� c

2

(2N2

)

S
0

⌘ f 0
(g)
4

, where the coe�cient of the divergent

contribution c has been here fixed to the exact value c = 15 and S
0

= 1

2

M2 (2N2) g. For very

large g, there is agreement with the continuum prediction f 0(g) = 4 in (2.3). For smaller

values (g = 10, 5, orange and light blue data points) strong deviations appear, compatible

with quadratic divergences.

study here. At g = 100, 50, 30, 20 the plots in Fig. 5 show a good agreement with the leading

order prediction in (2.3) for which f 0(g) = 4. For lower values of g – orange and light blue

data points in Figure 5 – we observe deviations that obstruct the continuum limit and signal

the presence of further quadratic (⇠ N2) divergences. They are compatible with an Ansatz

for hS
LAT

i for which the “constant” contribution multiplying 2N2 in (4.9)-(4.10) is actually

g-dependent. It seems natural to relate these power-divergences to those arising in continuum

perturbation theory, where they are usually set to zero using dimensional regularization [8].

From the perspective of a hard cut-o↵ regularization like the lattice one, this is related to

the emergence in the continuum limit of power divergences – quadratic, in the present two-

dimensional case – induced by mixing of the (scalar) Lagrangian with the identity operator

under UV renormalization. Additional contributions to these deviations might be due to the

(possibly wrong) way the continuum limit is taken, i.e. they could be related to a possible

infinite renormalization occurring in those field correlators and corresponding physical masses

which have been not investigated here (fermionic and z excitations). While to shed light on

the issue such points should be investigated in the future – see further comments in Section

5 – we proceed with a non-perturbative subtraction of these divergences. Namely, from the

data of Fig. 5 we subtract the continuum extrapolation of c
2

(multiplied by the number of

lattice points, 2N2), as determined in the right diagram of Fig. 4, for the full range of the

coupling explored. The result is shown in Fig. 6. The divergences appear to be completely
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Simulation: the cusp action

In measuring hS
cusp

i ⌘ g V
2

m2

8

f 0
(g) quadratic divergences appear.
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i = g N2 M2
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(g)

LAT
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+

c(g)

2

(2N2

)

S
0

= g N2 M2

In continuum perturbation theory dim. reg. set them to zero.
Here, expected mixing of the Lagrangian with lower dimension operator
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Figure 4: Left panel: Plots of hS
LAT

i
2N2

, where fits (dashed lines) to data points are linear in

1/N2. To ensure better visibility of the fits at di↵erent g values, ln g has been added. The

extrapolation to the continuum limit (symbol at infinite N) determines the coe�cient c/2 of

the divergent (⇠ N2) contribution in (4.9)-(4.10) and is represented in the diagram of the

right of this figure. Right panel: Data points estimate the continuum value of c/2 as from

the extrapolations of the linear fits above. The simulations at g = 30, mL = 6 (orange point)

are used for a check of the finite volume e↵ects, which appear here to be visible. Dashed and

dotted lines are the results of, respectively, a linear fit in 1/g and a fit to a polynomial of

degree two.

fits in Fig. 4, left, respectively 17 – consistently with the number 15 = 8 + 7 of bosonic fields

appearing in the path integral. Namely, such a contribution to the vev hSi = �@ lnZ/@ ln g in

(4.9), field-independent and proportional to the lattice volume, is simply counting the number

of degrees of freedom which appear quadratically, and multiplying g, in the action. Indeed,

for very large g the theory is quadratic in the bosons 18 and equipartition holds, namely

integration over the bosonic variables yields a factor proportional to g�
(2N

2

)

2 for each bosonic

field species 19.

Having determined with good precision the coe�cient of the divergence, we can proceed

first fixing it to be exactly c = 15 and subtracting from hS
LAT

i the corresponding contribution.
Having in mind an analysis at finite g, we perform simulations in order to determine the ratio

hSLAT i � c
2

(2N2)

S
0

⌘ f 0(g)
LAT

4
. (4.10)

On the right hand side we restored the general definition (1.3), which is the main aim of our

17Recall that in Fig. 4 ln g has been added to ensure better visibility of the fits at di↵erent g values.
18In lattice codes, it is conventional to omit the coupling form the (pseudo)fermionic part of the action, since

this is quadratic in the fields and hence its contribution in g can be evaluated by a simple scaling argument.
19It is interesting to mention that in theories with exact supersymmetry this constant contribution of the

bosonic action (this time on the trivial vacuum) is valid at all orders in g, due to the coupling constant

independence of the free energy. For twisted N = 4 SYM this is the origin of the supersymmetry Ward

identity S
bos

= 9N2/2 per lattice site, one of the observables used to measure soft supersymmetry breaking,

see [63]. We thank David Schaich and Andreas Wipf for pointing this out to us.

17

Measure II: the cusp action

Subtract divergences, assume g = ↵ gc: then from f 0
(g) = f 0

(gc)c is gc = 0.04g.



Cusp on the lattice vs cusp in the continuum

Subtract divergences, assume g = ↵ gc, from f 0
(g) = f 0

(gc)c get gc = 0.04g.
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Figure 7: Plot for f 0(g)/4 as determined from the N ! 1 extrapolation of (4.10), i.e. from

the extrapolations of the fits in Fig. 6, and plotted as a function of the (bare) continuum

coupling gc under the hypothesis that the latter is just a finite rescaling of the lattice bare

coupling g (gc = 0.04 g), see discussion at the end of Section 4. The dashed line represents the

first few terms in the perturbative series (2.3), the continuous line is obtained from a numerical

solution of the BES equation and represents therefore the prediction from the integrability of

the model. The simulations at g = 30, mL = 6 (orange point) are used for a check of the

finite volume e↵ects, that appear to be within statistical errors.

and the (bare) continuum one gc, from f 0(g) = f 0(gc)c we then derive that gc = 0.04g. A

simple look at Fig. 7 shows that, in the perturbative region, our analysis – and the related

assumption for the finite rescaling of the coupling – is in good qualitative agreement with the

integrability prediction. About direct comparison with the perturbative series (2.3), since we

are considering the derivative of (2.3) the first correction to the expected large g behavior

f 0(g)/4 ⇠ 1 is positive and proportional to the Catalan constant K. The plot in Fig. 7 does

not catch the upward trend of such a first correction (which is too small, about 2 percent,

if compared to the statistical error). Notice that, again under the assumption that such

simple relation between the couplings exists – something that within our error bars cannot be

excluded – the nonperturbative regime beginning with gc = 1 would start at g = 25, implying

that our simulations at g = 10, 5 would already test a fully non-perturbative regime of the

string sigma-model under investigation. The mild discrepancy observed in that point of this

region (g = 5 or gc = 0.2) which is not fixed by definition via the “matching” procedure

discussed above could be the e↵ect of several contributing causes. Among them, systematic

factors as the ones related to the complex phase – and its omission from the measurements, see

below – as well as finite volume e↵ects with related errors in the non-perturbative subtraction

of divergences. We emphasize that the relation between the lattice and continuum bare
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The phase
After linearization LF =  T OF  , integrating fermions leads to a complex Pfaffian
Pf OF = |(detOF )

1

2 | ei✓ .

The phase is encoded in the linearization: we deal with a fermion hermitian bilinear
b ⇠ ⌘2 whose corresponding quartic interaction

e�Lferm

4

= e�
b

2

4 a

=

Z
dx e�a x2

+i b x

comes in the exponential as a “repulsive” potential.

In the interesting (g = 1) region the real part of the phase has a flat distribution,

and reweighting hOi
reweight

=

hO ei✓i
✓=0

hei✓i
✓=0

breaks down.
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Alternative linearization

Exploit the Graßmann nature of fermions

LF4

= � 1

z2
(⌘2)2+

1

z2
(i ⌘i(⇢

MN
)

i
jn

N⌘j)2

= � 1

z2
(⌘2)2⌥ 2(⌘2)2⌥ ⌃±j

i⌃±i
j

where ⌃±j
i = ⌃

j
i ± ˜

⌃

j
i and

⌃i
j
= ⌘i⌘

j
˜

⌃j
i
= (⇢N )

iknN (⇢L)jlnL⌘k⌘
l

Choose the good sign (�). This ensure a Pfaffian real, but not definite positive
(Pf OF = ±(detOF )

1

2 ).

Simulations for the new Yukawa terms (now 1 + 16 real auxiliary fields)

LF4

�! 12

z
⌘2�+ 6�2

+

2

z
⌃±i

j�
j
i + �i

j�
j
i

are ongoing, reweighting seems problematic.
However, similar Lagrangean rearrangement do eliminate the sign problem
in other models with quartic fermionic interactions.

[Catterall 2015, Wipf et al. unpublished]



Conclusions

Solving a non-trivial 4d QFT is hard reduce the problem via AdS/CFT:

solve a non-trivial 2d QFT.

Lattice simulation of gauge-fixed Green-Schwarz string, Wilson-like fermion
discretizations, standard methods (Rational Hybrid Monte Carlo).

I Results seems not to be sensitive to the discretization adopted
I Observables measured are in good agreement with expectation at large g

I At small g, complex phase and sign problem.
Qualitative agreement with nonperturbative expectation from AdS/CFT

Comparison assumes trivial relation between g and gc - if not, no predictivity.
Then continuum prediction is the point where to study the theory, lattice bare coupling
tuned accordingly and used for fully predictive measurements of e.g. masses.
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Thanks for your attention.





g T/a⇥ L/a Lm am ⌧S
int

⌧mx

int

statistics [MDU]

5 16⇥ 8 4 0.50000 0.8 2.2 900
20⇥ 10 4 0.40000 0.9 2.6 900
24⇥ 12 4 0.33333 0.7 4.6 900,1000
32⇥ 16 4 0.25000 0.7 4.4 850,1000
48⇥ 24 4 0.16667 1.1 3.0 92,265

10 16⇥ 8 4 0.50000 0.9 2.1 1000
20⇥ 10 4 0.40000 0.9 2.1 1000
24⇥ 12 4 0.33333 1.0 2.5 1000,1000
32⇥ 16 4 0.25000 1.0 2.7 900,1000
48⇥ 24 4 0.16667 1.1 3.9 594,564

20 16⇥ 8 4 0.50000 5.4 1.9 1000
20⇥ 10 4 0.40000 9.9 1.8 1000
24⇥ 12 4 0.33333 4.4 2.0 850
32⇥ 16 4 0.25000 7.4 2.3 850,1000
48⇥ 24 4 0.16667 8.4 3.6 264,580

30 20⇥ 10 6 0.60000 1.3 2.9 950
24⇥ 12 6 0.50000 1.3 2.4 950
32⇥ 16 6 0.37500 1.7 2.3 975
48⇥ 24 6 0.25000 1.5 2.3 533,652
16⇥ 8 4 0.50000 1.4 1.9 1000
20⇥ 10 4 0.40000 1.2 2.7 950
24⇥ 12 4 0.33333 1.2 2.1 900
32⇥ 16 4 0.25000 1.3 1.8 900,1000
48⇥ 24 4 0.16667 1.3 4.3 150

50 16⇥ 8 4 0.50000 1.1 1.8 1000
20⇥ 10 4 0.40000 1.2 1.8 1000
24⇥ 12 4 0.33333 0.8 2.0 1000
32⇥ 16 4 0.25000 1.3 2.0 900,1000
48⇥ 24 4 0.16667 1.2 2.3 412

100 16⇥ 8 4 0.50000 1.4 2.7 1000
20⇥ 10 4 0.40000 1.4 4.2 1000
24⇥ 12 4 0.33333 1.3 1.8 1000
32⇥ 16 4 0.25000 1.3 2.0 950,1000
48⇥ 24 4 0.16667 1.4 2.4 541

Table 1: Parameters of the simulations: the coupling g, the temporal (T ) and spatial (L)

extent of the lattice in units of the lattice spacing a, the line of constant physics fixed by Lm

and the mass parameter M = am. The size of the statistics after thermalization is given in the

last column in terms of Molecular Dynamic Units (MDU), which equals an HMC trajectory

of length one. In the case of multiple replica the statistics for each replica is given separately.

The auto-correlation times ⌧ of our main observables mx and S are also given in the same

units.
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