Lattice QCD Searches for Tetraquarks containing Charm Quarks

Gavin Cheung
for the Hadron Spectrum Collaboration

DAMTP, University of Cambridge
25 July 2016

Outline

Introduction

Methodology

Results

Introduction

Introduction

- Tetraquarks may be able to explain some of the X, Y, Z states.
- Exciting era of scattering on the lattice.
- Inclusion of
diquark-antidiquark operators important in first principles lattice calcuations.
Alexandrou et al. arXiv:1212.1418
Prelovsek et al. arXiv:1405.7623
Guerrieri et al. arXiv:1411.2247
Padmanath et al. arXiv:1503.03257
Francis et al. arXiv:1607.05214

S. Olsen, arxiv:1511.01589

Double and Hidden-Charm Tetraquarks

No experimental candidate but have been hypothesised.

Especially relevant for the charged Z_{c} states. Isospin-1 more approachable when there is no charm quark annihilation.

Methodology

Calculation Method

Can we find a tetraquark state on the lattice?

Calculation Method

Can we find a tetraquark state on the lattice?

- Anisotropic lattice with $N_{f}=2+1$ dynamical flavours. Wilson clover actions for the fermions. Symanzik-improved for the gauge action.

$\left(L / a_{s}\right)^{3} \times T / a_{t}$	$a_{s}(\mathrm{fm})$	$\frac{a_{s}}{a_{t}}$	$M_{\pi}(\mathrm{MeV})$	N_{cfgs}
$16^{3} \times 128$	≈ 0.12	≈ 3.5	391	478

Calculation Method

Can we find a tetraquark state on the lattice?

- Anisotropic lattice with $N_{f}=2+1$ dynamical flavours. Wilson clover actions for the fermions. Symanzik-improved for the gauge action.

$\left(L / a_{s}\right)^{3} \times T / a_{t}$	$a_{s}(\mathrm{fm})$	$\frac{a_{s}}{a_{t}}$	$M_{\pi}(\mathrm{MeV})$	$N_{\text {cfgs }}$
$16^{3} \times 128$	≈ 0.12	≈ 3.5	391	478

- Quark fields smeared using the distillation framework.

Calculation Method

Can we find a tetraquark state on the lattice?

- Anisotropic lattice with $N_{f}=2+1$ dynamical flavours. Wilson clover actions for the fermions. Symanzik-improved for the gauge action.

$\left(L / a_{s}\right)^{3} \times T / a_{t}$	$a_{s}(\mathrm{fm})$	$\frac{a_{s}}{a_{t}}$	$M_{\pi}(\mathrm{MeV})$	$N_{\text {cfgs }}$
$16^{3} \times 128$	≈ 0.12	≈ 3.5	391	478

- Quark fields smeared using the distillation framework.
- Spectra determined by solving GEVP $C_{i j}(t)=\left\langle\mathcal{O}_{i}(t) \mathcal{O}_{j}^{\dagger}(0)\right\rangle$ with large bases of operators consisting of:
- Meson-Meson, $N_{\text {dist }}=64$
- Diquark-Antidiquark, $N_{\text {dist }}=24$

Meson-Meson Operator Construction

- $q \bar{q}$ operator, $\mathcal{O}_{\Lambda, \lambda}(\vec{p}, t) \sim \bar{q} \Gamma \overleftrightarrow{D} \ldots \overleftrightarrow{D} q$ subduced into lattice irrep with quantised momenta \vec{p}.

Meson-Meson Operator Construction

- $q \bar{q}$ operator, $\mathcal{O}_{\Lambda, \lambda}(\vec{p}, t) \sim \bar{q} \Gamma \overleftrightarrow{D} \ldots \overleftrightarrow{D} q$ subduced into lattice irrep with quantised momenta \vec{p}.
- Two $q \bar{q}$ operators coupled using generalised Clebsch-Gordan coefficients,

$$
\mathcal{O}_{\Lambda, \lambda}^{M M}(\vec{p}, t)=\sum_{\substack{\vec{p}_{1}+\vec{p}_{2}=\vec{p} \\
\lambda_{1}, \lambda_{2}}} C_{\Lambda, \lambda}^{\vec{p}}\left(\begin{array}{lll}
\vec{p}_{1} & \Lambda_{1} & \lambda_{1} \\
\vec{p}_{2} & \Lambda_{2} & \lambda_{2}
\end{array}\right) \mathcal{O}_{\Lambda_{1}, \lambda_{1}}\left(\vec{p}_{1}, t\right) \mathcal{O}_{\Lambda_{2}, \lambda_{2}}^{\prime}\left(\vec{p}_{2}, t\right)
$$

Meson-Meson Operator Construction

- $q \bar{q}$ operator, $\mathcal{O}_{\Lambda, \lambda}(\vec{p}, t) \sim \bar{q} \Gamma \overleftrightarrow{D} \ldots \overleftrightarrow{D} q$ subduced into lattice irrep with quantised momenta \vec{p}.
- Two $q \bar{q}$ operators coupled using generalised Clebsch-Gordan coefficients,

$$
\mathcal{O}_{\Lambda, \lambda}^{M M}(\vec{p}, t)=\sum_{\substack{\vec{p}_{1}+\vec{p}_{2}=\vec{p} \\
\lambda_{1}, \lambda_{2}}} C_{\Lambda, \lambda}^{\vec{p}}\left(\begin{array}{lll}
\vec{p}_{1} & \Lambda_{1} & \lambda_{1} \\
\vec{p}_{2} & \Lambda_{2} & \lambda_{2}
\end{array}\right) \mathcal{O}_{\Lambda_{1}, \lambda_{1}}\left(\vec{p}_{1}, t\right) \mathcal{O}_{\Lambda_{2}, \lambda_{2}}^{\prime}\left(\vec{p}_{2}, t\right)
$$

- Advantageous to use variationally optimised $q \bar{q}$ operators.

Non-zero Momentum - An Example

- A pseudoscalar (P) and vector (V) meson both with one unit of momentum coupled to a meson-meson operator in $T_{1}^{+}\left(1^{+}\right)$.

Non-zero Momentum - An Example

- A pseudoscalar (P) and vector (V) meson both with one unit of momentum coupled to a meson-meson operator in $T_{1}^{+}\left(1^{+}\right)$.
- P: helicity-0 $\rightarrow A_{2}$
- V : helicity- $0 \rightarrow A_{1}$ and helicity- $1 \rightarrow E_{2}$.

Non-zero Momentum - An Example

- A pseudoscalar (P) and vector (V) meson both with one unit of momentum coupled to a meson-meson operator in $T_{1}^{+}\left(1^{+}\right)$.
- P: helicity-0 $\rightarrow A_{2}$
- V : helicity- $0 \rightarrow A_{1}$ and helicity- $1 \rightarrow E_{2}$.

$\Lambda_{P} \otimes \Lambda_{V}$	Λ
$A_{2} \otimes A_{1}$	$T_{1}^{+}, A_{1}^{-}, E^{-}$
$A_{2} \otimes E_{2}$	$T_{1}^{+}, T_{2}^{+}, T_{1}^{-}, T_{2}^{-}$

Non-zero Momentum - An Example

- A pseudoscalar (P) and vector (V) meson both with one unit of momentum coupled to a meson-meson operator in $T_{1}^{+}\left(1^{+}\right)$.
- P: helicity-0 $\rightarrow A_{2}$
- V: helicity- $0 \rightarrow A_{1}$ and helicity- $1 \rightarrow E_{2}$.

$\Lambda_{P} \otimes \Lambda_{V}$	Λ
$A_{2} \otimes A_{1}$	$T_{1}^{+}, A_{1}^{-}, E^{-}$
$A_{2} \otimes E_{2}$	$T_{1}^{+}, T_{2}^{+}, T_{1}^{-}, T_{2}^{-}$

- Two operators from PV and we expect two energy levels.

Diquark-Antidiquark Operator Construction

- Construct the continuum diquark operator

$$
\delta_{\Gamma}^{c}=c_{\alpha i j} q_{i}^{T} C \Gamma q_{j}
$$

where C is the charge-conjugation matrix and $c_{\alpha i j}$ are the colour coupling coefficients that couple the two quarks to either the colour $\underline{\overline{3}}$ or $\underline{6}$ irrep.

Diquark-Antidiquark Operator Construction

- Construct the continuum diquark operator

$$
\delta_{\Gamma}^{c}=c_{\alpha i j} q_{i}^{T} C \Gamma q_{j}
$$

where C is the charge-conjugation matrix and $c_{\alpha i j}$ are the colour coupling coefficients that couple the two quarks to either the colour $\underline{\overline{3}}$ or $\underline{6}$ irrep.

- Tetraquark operator by coupling the diquark and anti-diquark to a colour singlet,

$$
T=\mathbb{C}_{c \bar{c}} \delta_{\Gamma}^{c} \bar{\delta}_{\Gamma^{\prime}}^{\bar{c}}
$$

where $\mathbb{C}_{c \bar{c}}$ are the coefficients for either $\underline{\overline{3}} \otimes \underline{3}$ or $\underline{6} \otimes \underline{\overline{6}}$ to $\underline{1}$.

Results

$c c \bar{q} \bar{q}, T_{1}^{+}\left(1^{+}\right)$isospin-0

$c c \bar{q} \bar{q}, 2^{+}$, isospin-0

E^{+}

$T_{2}{ }^{+}$

$c \bar{c} q \bar{q}, T_{1}^{++}\left(1^{++}\right)$isospin-1

$c \bar{c} q \bar{q}, T_{1}^{+-}\left(1^{+-}\right)$isospin-1

Conclusions

- We do not find a hint of a narrow resonance with the inclusion of tetraquark operators.
- Further investigations to be done on bigger lattices and lighter quark masses.
- Prospective studies in isospin-0 $c \bar{c} q \bar{q}$.

Backup - Variational Method

In order to determine the spectrum, we compute a matrix of correlators,

$$
C_{i j}(t)=\sum_{n}\langle 0| \mathcal{O}_{i}|n\rangle\langle n| \mathcal{O}_{j}^{\dagger}|0\rangle e^{-E_{n} t}
$$

E_{n} can be extracted by solving the generalised eigenvalue problem $C(t) v^{n}=\lambda^{n}\left(t, t_{0}\right) C\left(t_{0}\right) v^{n}$ and we perform the fit

$$
\lambda^{n}\left(t, t_{0}\right)=\left(1-A_{n}\right) e^{-E_{n}\left(t-t_{0}\right)}+A_{n} e^{-E_{n}^{\prime}\left(t-t_{0}\right)} .
$$

Backup - Single Mesons

1. Construct a fermion bilinear with a gamma matrix Γ and a number of gauge covariant derivatives D.

$$
\mathcal{O}(\vec{p}, t)=\int d^{3} x e^{i \vec{p} \cdot \vec{x}} \bar{q}\lceil D \ldots q .
$$

2. Couple to a continuum angular momentum irrep using Clebsch-Gordan coefficients. For example, for one gamma matrix and one derivative at rest,

$$
\mathcal{O}^{J, M}(t)=\sum_{m_{1}, m_{2}}\left\langle J_{1}, m_{1} ; J_{2}, m_{2} \mid J, M\right\rangle \bar{q} \Gamma_{m_{1}} D_{m_{2}} q
$$

3. Project onto a lattice irrep using 'subduction' coefficients.

$$
\mathcal{O}_{\Lambda, \lambda}(\vec{p}, t)=\sum_{M} S_{\Lambda, \lambda}^{J, M} \mathcal{O}^{J, M}(\vec{p}, t)
$$

$c c \bar{q} \bar{q}, A_{1}^{+}, \mathcal{I}=0$

$c c \bar{q} \bar{q}, A_{1}^{+}, \mathcal{I}=1$

$c c \bar{q} \bar{s}, T_{1}^{+}\left(1^{+}\right)$isospin- $\frac{1}{2}$

$c c \bar{q} \bar{q}, T_{1}^{+}\left(1^{+}\right)$isospin-0 $\lambda^{n} e^{E_{n}\left(t-t_{0}\right)}$

$c c \bar{q} \bar{q}, T_{1}^{+}\left(1^{+}\right)$isospin-0 Overlaps $Z_{i}=\langle 0| \mathcal{O}_{i}|n\rangle$

T_{1}^{+}Varying $N_{\text {dist }}$

