Semi-leptonic B and B_{s}-decays with charming hadronic final state

Oliver Witzel
Higgs Centre for Theoretical Physics

THE UNIVERSITY of EDINBURGH

Lattice 2016
Southampton, UK, July 27, 2016

RBC- and UKQCD collaborations

BNL/RBRC	Columbia U	U Edinburgh	U Southampton
Mattia Bruno	Ziyuan Bai	Peter Boyle	Jonathan Flynn
Tomomi Ishikawa	Norman Christ	Guido Cossu	Vera Gülpers
Taku Izubuchi	Luchang Jin	Luigi Del Debbio	James Harrison
Chulwoo Jung	Christopher Kelly	Richard Kenway	Andreas Jüttner
Christoph Lehner	Bob Mawhinney	Julia Kettle	Andrew Lawson
Meifeng Lin	Greg McGlynn	Ava Khamseh	Edwin Lizarazo
Hiroshi Ohki	David Murphy	Antonin Portelli	Chris Sachrajda
Shigemi Ohta (KEK)	Jiqun Tu	Brian Pendleton	Francesco Sanfilippo
Amarjit Soni		Oliver Witzel	Matthew Spraggs
Sergey Syritsyn		Azusa Yamaguchi	Tobias Tsang
CERN	U Connecticut	FZ Jülich	KEK
Marina Marinkovic	Tom Blum	Taichi Kawanai	Julien Frison
Peking U	U Plymouth	York U (Toronto)	
Xu Feng	Nicolas Garron	Renwick Hudspith	

RBC- and UKQCD collaborations

BNL/RBRC	Columbia U	U Edinburgh	U Southampton
Mattia Bruno	Ziyuan Bai	Peter Boyle	Jonathan Flynn
Tomomi Ishikawa	Norman Christ	Guido Cossu	Vera Gülpers
Taku Izubuchi	Luchang Jin	Luigi Del Debbio	James Harrison
Chulwoo Jung	Christopher Kelly	Richard Kenway	Andreas Jüttner
Christoph Lehner	Bob Mawhinney	Julia Kettle	Andrew Lawson
Meifeng Lin	Greg McGlynn	Ava Khamseh	Edwin Lizarazo
Hiroshi Ohki	David Murphy	Antonin Portelli	Chris Sachrajda
Shigemi Ohta (KEK)	Jiqun Tu	Brian Pendleton Amarancesco Sanfilippo Oliver Witzel Sergey Syritsyn	
Azusa Yamaguchi	Tobias Tsang Spaggs		
Cern			Kek
CERN	U Connecticut	FZ Jülich	KEK
Marina Marinkovic	Tom Blum	Taichi Kawanai	Julien Frison
Peking U	U Plymouth	York U (Toronto)	
Xu Feng	Nicolas Garron	Renwick Hudspith	

Motivation

- Form factors for $B \rightarrow D^{(*)} \ell \nu$
\rightarrow Allow to determine the CKM matrix-element $\left|V_{c b}\right|$
$\rightarrow\left|V_{c b}\right|$ enters as normalization in the unitary triangle fit
$\rightarrow 2-3 \sigma$ discrepancy between $\left|V_{c b}\right|^{\text {incl }}$ and $\left|V_{c b}\right|^{\text {excl }}$
\rightarrow Atlas, CMS, LHCb and Belle II will improve experimental results
- $2-3 \sigma$ tension in $R_{\left.D^{*}\right)}$ ratio - independent of $\left|V_{c b}\right|$
[Fajfer et al. PRD 85 (2012) 094025],[J. Bailey et al. PRL 109 (2012) 071802], [BaBar PRL 109 (2012) 101802]

$$
R_{D^{(*)}}=\mathcal{B}\left(B \rightarrow D^{(*)} \tau \nu_{\tau}\right) / \mathcal{B}\left(B \rightarrow D^{(*)} \ell \nu_{\ell}\right) \text {, with } \ell=e, \mu
$$

\rightarrow Due to its mass τ is sensitive to both form factors $f_{+}\left(q^{2}\right)$ and $f_{0}\left(q^{2}\right)$, $\ell=e, \mu$ are dominated by $f_{+}\left(q^{2}\right)$
\rightarrow Anomaly in $R_{D^{*}}$ is seen by BaBar, LHCb, and Belle
\rightarrow New physics?

Motivation: CKM unitarity triangle fit

$\left|V_{c b}\right|$ enters crucially as normalization of the unitarity triangle

$$
\varepsilon_{K} \propto\left|V_{c b}\right|^{4}
$$

Motivation: $R_{D^{(*)}}$

$$
B \rightarrow D^{(*)} T V
$$

Very preliminary \& unofficial average including new LHCb \& Belle results

- Not using latest lattice results: $\bar{B} \rightarrow D^{*} \ell \nu:$
Fermilab/MILC [PRD 79 (2014) 014506] [PRD 89 (2014) 114504] $B \rightarrow D \ell \nu:$
Fermilab/MILC [PRD 92 (2015) 034506] HPQCD
[PRD 92 (2015) 054510] Atoui et al.
[EPJ. C74 (2014) 2861]

Figure: [Talk by T. Gershon at MIAPP June 2015]

Our RHQ Project

- Use domain-wall light quarks and nonperturbatively tuned relativistic
b-quarks to compute at few-percent precision
- Nonperturbative tuning of RHQ parameters [PRD 86 (2012) 116003]
- Decay constants f_{B} and $f_{B_{s}}$ [PRD 91 (2015) 054502]
$-B \rightarrow \pi \ell \nu$ and $B_{s} \rightarrow K \ell \nu$ form factors [PRD 91 (2015) 074510]
- $g_{B^{*} B \pi}$ coupling constant [PRD 93 (2016) 014510]
- $B^{0}-\overline{B^{0}}$ mixing
- Rare B decays [arXiv:1511.06622] Talk by E. Lizarazo, Friday, July 29, 17:10
- $f_{B}, f_{B_{s}}$, and semi-leptonic form factors
- O (a) improvement at 1 -loop and mostly nonperturbative renormalization
- Correction factors and coefficients computed at 1-loop
- B mixing
- Tree-level $O(a)$ improvement
- Perturbative or mostly nonperturbative renormalization

$B \rightarrow D \ell \nu$ and $B_{s} \rightarrow D_{s} \ell \nu$ charged current decays

$-\left\langle D\left(p_{D}\right)\right| \mathcal{V}^{\mu}\left|B\left(p_{B}\right)\right\rangle=f_{+}\left(q^{2}\right)\left[\left(p_{B}+p_{D}\right)^{\mu}-\frac{M_{B}^{2}-M_{D}^{2}}{q^{2}} q^{\mu}\right]+f_{0}\left(q^{2}\right) \frac{M_{B}^{2}-M_{D}^{2}}{q^{2}} q^{\mu}$

$B_{(s)} \rightarrow D_{(s)}^{(*)}$ form factors

- Re-use DWF point-source light and strange quark propagators
- Generate Gaussian smeared MDWF charm quark propagators (on the fly)
- Create Gaussian smeared-source sequential heavy quark propagators
- Compute all possible contractions for pseudoscalar or vector final states
- General building blocks code incl. terms for 1-loop $O\left(\alpha_{s} a\right)$ improvement
- Coefficients to be computed in lattice perturbation theory

2+1 Flavor Domain-Wall Iwasaki ensembles

L	$a^{-1}(\mathrm{GeV})$	$a m_{l}$	$a m_{s}$	$M_{\pi}(\mathrm{MeV})$	\# configs.	\#sources	
24	1.784	0.005	0.040	338	1636	1	[PRD 78 (2008) 114509]
24	1.784	0.010	0.040	434	1419	1	[PRD 78 (2008) 114509]
32	2.383	0.004	0.030	301	628	2	[PRD 83 (2011) 074508]
32	2.383	0.006	0.030	362	889	2	[PRD 83 (2011) 074508]
32	2.383	0.008	0.030	411	544	2	[PRD 83 (2011) 074508]
48	1.730	0.00078	0.0362	139	40	$81 / 1^{\star}$	[PRD 93 (2016) 074505]
64	2.359	0.000678	0.02661	139	-	-	[PRD 93 (2016) 074505]
48	~ 2.7	0.002144	0.02144	~ 250	>50	24	[in progress]

* All mode averaging: 81 "sloppy" and 1 "exact" solve [Blum et al. PRD 88 (2012) 094503]
- Lattice spacing determined from combined analysis [Blum et al. PRD 93 (2016) 074505]
- $a: \sim 0.11 \mathrm{fm}, \sim 0.08 \mathrm{fm}, \sim 0.07 \mathrm{fm}$

Up, down, and strange quarks

- Domain-wall fermions with same parameters as in the sea-sector (domain-wall hight M_{5}, extension of $5^{\text {th }}$ dimension L_{s})
- Unitary and partially quenched quark masses
- Strange quarks at/near physical the physical value

Charm quarks

- Möbius DWF optimized for heavy quarks [Boyle et al. JHEP 1604 (2016) 037]
- $M_{5}=1.6, L_{s}=12$
- Discretization errors well under control for $a m_{c}<0.45$
\rightarrow On coarse ($a^{-1}=1.784 \mathrm{GeV}$) ensembles we simulate just below $m_{c}^{\text {phys }}$
\rightarrow Simulate 3 or 2 charm-like masses and then extrapolate/interpolate
\rightarrow Linear extrapolation is small and benign; interpolation is safe

Charm extrapolation Talk by T. Tsang, Friday, July 29, 13:00

Figure by T . Tsang

- Small extrapolation for $a^{-1}=1.784 \mathrm{GeV}$ ensembles
- Interpolation for $a^{-1} \geq 2.383 \mathrm{GeV}$ ensembles

MDWF charm quarks

Advantages

- Very similar setup for computing $B_{s} \rightarrow D_{s}$ as for $B_{s} \rightarrow K$
\rightarrow Only minor modifications for the perturbative calculations
- No nonperturbative tuning of the RHQ action for charm quarks
- Allows to explore new concept of heavy DWF for semileptonic decays
\rightarrow Fully nonperturbative renormalization of f_{D} in progress Talk by A. Khamseh, Wednesday, July 27, 10:20

Disadvantages

- Larger numerical costs than RHQ charm
- On coarse ensembles small extrapolation needed

Bottom quarks

- Relativistic Heavy Quark action developed by Christ, Li, and Lin [Christ et al. PRD 76 (2007) 074505], [Lin and Christ PRD 76 (2007) 074506]
- Allows to tune the three parameters ($m_{0} a, c_{P}, \zeta$) nonperturbatively [PRD 86 (2012) 116003]
- Builds upon Fermilab approach [El-Khadra et al. PRD 55 (1997) 3933] by tuning all parameters of the clover action non-perturbatively; close relation to the Tsukuba formulation [S. Aoki et al. PTP 109 (2003) 383]
- Heavy quark mass is treated to all orders in $\left(m_{b} a\right)^{n}$
- Expand in powers of the spatial momentum through $O(\vec{p} a)$
- Resulting errors will be of $O\left(\vec{p}^{2} a^{2}\right)$
- Allows computation of heavy-light quantities with discretization errors of the same size as in light-light quantities
- Applies for all values of the quark mass
- Has a smooth continuum limit
- Recently re-tuned to account for updated values of a^{-1}

First results

- Define (single) ratios for $B_{s} \rightarrow D_{s} \ell \nu$, with B_{s} meson at rest

$$
R_{3, \mu}\left(t, t_{\text {snk }}, \vec{p}_{D_{s}}\right)=\frac{C_{3, \mu}\left(t, t_{\text {ssk }}, \vec{p}_{D_{s}}\right)}{\left.\sqrt{C_{2}^{D_{s}}\left(t, \vec{p}_{D_{s}}\right.}\right)_{C_{2}^{s}}^{B_{s}\left(t_{\text {sskk }}-t\right)}} \frac{\sqrt{2 E_{D_{s}}}}{\exp \left(-E_{D_{s}} t\right) \exp \left(-M_{B_{s}}\left(t_{\text {snkk }}-t\right)\right)}
$$

$-24^{3} \times 64$ ensemble with $a^{-1}=1.784 \mathrm{GeV}$ and $a m_{l}=0.005\left(M_{\pi} \approx 338 \mathrm{MeV}\right)$

q^{2} dependence

- Data on further ensembles exists
- Have to obtain renormalization factors for meaningful combination

Alternative determination via double ratios

- Introduced by Hashimoto et al. for $B \rightarrow D \ell \nu$ at zero recoil [PRD 66 (2002) 014503]
- Extended to nonzero recoil by Fermilab/MILC [PRD92 (2015) 034506]
- Get form factors from double ratio at zero and single ratios at nonzero recoil

$$
R_{+}=\frac{\langle D(\overrightarrow{0})| V_{c b}^{4}|B(\overrightarrow{0})\rangle\langle B(\overrightarrow{0})| V_{c b}^{4}|D(\overrightarrow{0})\rangle}{\langle D(\overrightarrow{0})| V_{c c}^{4}|D(\overrightarrow{0})\rangle\langle B(\overrightarrow{0})| V_{b b}^{4}|B(\overrightarrow{0})\rangle}
$$

$Q_{+}(\vec{p}) \equiv \frac{\langle D(\vec{p})| V^{4}|B(\overrightarrow{0})\rangle}{\langle D(\overrightarrow{0})| V^{4}|B(\overrightarrow{0})\rangle} \quad R_{-}(\vec{p}) \equiv \frac{\langle D(\vec{p})| \vec{V}|B(\overrightarrow{0})\rangle}{\langle D(\vec{p})| V^{4}|B(\overrightarrow{0})\rangle} \quad x_{f}(\vec{p}) \equiv \frac{\langle D(\vec{p})| \vec{V}|D(\overrightarrow{0})\rangle}{\langle D(\vec{p})| V^{4}|D(\overrightarrow{0})\rangle}$

- Need renormalization factors (ϱ) for obtaining form factors at $q^{2}>0$

Exploratory comparison of single vs. double ratios

- $32^{3} \times 64$ ensemble with $a^{-1}=2.383 \mathrm{GeV}$ and $a m_{\ell}=0.006\left(M_{\pi} \approx 362 \mathrm{MeV}\right)$
- Subset of data (1 source), only pseudoscalar final states (D and D_{s})
- Analyzed data for $B_{s} \rightarrow D_{s} \ell \nu$

- Relative error: 1.9\%
- Will it be worth $5 \times$ larger costs?
- Have to look at $B \rightarrow D$, nonzero momenta, fitting ranges, etc.

Resources and Acknowledgements

- Simulations on $24^{3}, 32^{3}$, and the 48^{3} ensemble with physical pions

USQCD: kaon, J/psi, Ds, Bc, and pi0 cluster at Fermilab
12s at Jlab
RBRC/BNL and Columbia U: small local clusters

- Simulations on the $a^{-1} \sim 2.7 \mathrm{GeV} 48^{3}$ ensemble ARCHER UoE: Cray XC30
DiRAC UoE: BG/Q

Cost for charm 3-point functions

- Single ratios
- $B \rightarrow D \ell \nu, B \rightarrow D^{*} \ell \nu$ (1 charm inversion)
- $B_{s} \rightarrow D_{s} \ell \nu, B_{s} \rightarrow D_{s}^{*} \ell \nu$ (0 additional charm inversions)
- Double ratios
- $B \rightarrow D \ell \nu$ and $B \rightarrow D^{*} \ell \nu$ (3 charm inversions)

$$
\begin{aligned}
& B \rightarrow D, B \rightarrow B, D \rightarrow B, D \rightarrow D \\
& B \rightarrow D^{*}, B \rightarrow B, D^{*} \rightarrow B, D^{*} \rightarrow D^{*}
\end{aligned}
$$

- $B_{s} \rightarrow D_{s} \ell \nu$ and $B_{s} \rightarrow D_{s}^{*} \ell \nu$ (2 additional charm inversions)

$$
\begin{aligned}
& B_{s} \rightarrow D_{s}, B_{s} \rightarrow B_{s}, D_{s} \rightarrow B_{s}, D_{s} \rightarrow D_{s} \\
& B_{s} \rightarrow D_{s}^{*}, B_{s} \rightarrow B_{s}, D_{s}^{*} \rightarrow B_{s}, D_{s}^{*} \rightarrow D_{s}^{*}
\end{aligned}
$$

- Since we are extrapolating (interpolating) to the physical charm quark pass, we encounter the factor 5 for 3 (2) used charm quark masses
- Total: $N_{\text {configurations }} \times N_{\text {sources }} \times 2 \times N_{\text {charm }} \times(5$ or 1$)$

