Determination of chiral condensate from low－lying eigenmodes of Mobius domain－wall Dirac operator

based on arXiv：1607．01099［hep－lat］

> JLQCD collaboration：Guido Cossu（Edinburgh）， Hidenori Fukaya（Osaka），Shoji Hashimoto， Takashi Kaneko，Jun Noaki（KEK） ＠Lattice 2016，University of Southampton July 25， 2016 JICFuS Computational Fundamental Science

JLQCD collaboration

- Members
- KEK: Y. Aoki, B. Colquhoun, B. Fahy, S. Hashimoto, T. Kaneko, H. Matsufuru, K. Nakayama, M. Tomii
- Osaka: H. Fukaya, T. Onogi
- Kyoto: S. Aoki
- Edinburgh: G. Cossu
- RIKEN: N. Yamanaka
- Wuhan: A. Tomiya
- Machines @ KEK
- Hitachi SR16000 M1
- IBM Blue Gene /Q

Chiral condensate

- VEV of scalar density operator: $\langle\bar{q} q\rangle$
- Characterizes the QCD vacuum after the spontaneous chiral symmetry breaking.
- Eigenvalue density of the Dirac operator

$$
\rho(\lambda)=\frac{1}{V}\left\langle\sum_{i} \delta\left(\lambda-\lambda_{i}\right)\right\rangle
$$

- Related to the chiral condensate in the thermodynamical limit (Banks-Casher relation):

$$
\rho(\lambda)=\frac{1}{\pi} \operatorname{Re}\langle\bar{q} q\rangle_{m_{v}=i \lambda} \quad \Rightarrow \quad \rho(0)=\frac{\Sigma}{\pi}
$$

QCD Dirac spectrum

- Our previous work with overlap fermion

JLQCD, PRL101, 122002 (2010)

- 2 and 2+1 flavors
- p and ε regimes (various quark masses)
- $16^{3} \times 48$ and $24^{3} \times 48$
- various topological charges
- Damgaard-Fukaya (2009): NLO ChPT in p-and ε-regime
- Limitation due to computational cost: finite lattice spacing, finite volume

New data set of JLQCD

- With Mobius domain-wall fermion (2012~)
- 2+1 flavor (uds)
- Mobius domain-wall fermion [with stout link]
- residual mass < $\mathrm{O}(1 \mathrm{MeV})$
- lattice spacing : $1 / \mathrm{a}=2.4,3.6,4.5 \mathrm{GeV}$
- volume : L = 2.7 fm ($3^{3}, 48^{3}, 64^{3}$ lattices)
- quark mass : $\mathrm{m}_{\pi}=230,300,400,500 \mathrm{MeV}$
- statistics: 10,000 MD time each

$\beta=4.17,1 / \mathrm{a} \sim 2.4 \mathrm{GeV}$,	$32^{3} \mathrm{x} 64(\mathrm{x} 12)$	
m_{ud}	m_{π} $[\mathrm{MeV}]$	MD time
$\mathrm{m}_{\mathrm{s}}=0.030$		
0.007	310	10,000
0.012	410	10,000
0.019 510 10,000 $\mathrm{~m}_{\mathrm{s}}=0.040$ 0.0035 230 10,000 0.0035 230 10,000 $\left(48^{3} \mathrm{x} 96\right)$	320	10,000
0.007	320	
0.012	410	10,000
0.019	510	10,000

$\beta=4.35,1 / a \sim 3.6 \mathrm{GeV}, 48^{3} \mathrm{x} 96$ (x8)

m_{ud}	$\begin{gathered} \mathrm{m}_{\pi} \\ {[\mathrm{MeV}]} \end{gathered}$	MD time
$\mathrm{m}_{\mathrm{s}}=0.018$		
0.0042	300	10,000
0.0080	410	10,000
0.0120	500	10,000
$\mathrm{m}_{\mathrm{s}}=0.025$		
0.0042	300	10,000
0.080	410	10,000
0.0120	510	10,000
$\beta=4.47,1 / \mathrm{a} \sim 4.6 \mathrm{GeV}, 64{ }^{3} \times 128$ (x8)		
0.0030	~ 300	10,000

Calculation of eigenvalue distribution

- Explicit calculation of individual ev
- (with Lanczos or related)
- Number of ev's to be calculated increases as V.
- Computational cost increases as $\mathrm{O}\left(\mathrm{V}^{2}\right)$.
- Stochastic counting
- Stochastic estimate of ev's in a given interval.
- Some (controlled) approximation is involved.
- Computational cost scales $\mathrm{O}(\mathrm{V})$.

Previous work

Giusti, Luscher, JHEP 0903, 013 (2009).

- Well established method to count the ev's below some threshold.

$$
\mathbb{P}_{M} \simeq h(\mathbb{X})^{4}, \quad \mathbb{X}=1-\frac{2 M_{*}^{2}}{D_{m}^{\dagger} D_{m}+M_{*}^{2}},
$$

-h(X) : Step function approximated by Chebyshev polynomial, $\mathrm{n} \sim 32$.
$-M_{*}$ needs to be fixed.

- Cost: $2 \mathrm{n} \times \mathrm{N}_{\text {iter }} \sim \mathrm{O}$ (5000) $\mathrm{D}^{\dagger} \mathrm{D}$ multiplication

Chebyshev filtering

Di Napoli, Polizzi, Saad, arXiv:1308.4275 [cs.NA].
See also, Fodor, Holland, Kuti, Mondal, Nogradi, Wong, arXiv:1605.08091 [hep-lat].

- Stochastic counting of ev's of an Hermitian matrix A
- Number of ev's in a range [a,b]:

$$
n[a, b]=\frac{1}{N_{v}} \sum_{k=1}^{N_{v}} \xi_{k}^{\dagger} h(A) \xi_{k}
$$

$-\xi_{k}: N_{v}$ (normalized) Gaussian noise vector

- $h(A)$: filtering function approximated by a Chebyshev polynomial.

$$
h(x)=\left\{\begin{array}{ll}
1 & \text { for } x \in[a, b] \\
0 & \text { otherwise }
\end{array} \quad \cong \sum_{j=0}^{p} g_{j}^{p} \gamma_{j} T_{j}(x)\right.
$$

Chebyshev filtering

- Chebyshev approximation

$$
h(x)=\left\{\begin{array}{ll}
1 & \text { for } x \in[a, b] \\
0 & \text { otherwise }
\end{array} \cong \sum_{j=0}^{p} g_{j}^{p} \gamma_{j} T_{j}(x)\right.
$$

- Coefficients are uniquely determined for a given $[a, b]$ within $[-1,+1]$.
- Larger the p, the approximation is better.
- Unwanted oscillations suppressed by the Jackson term g_{j}^{p}, also given once $[a, b]$ is fixed.

Di Napoli, Polizzi, Saad, arXiv:1308.4275 [cs.NA].

Chebyshev filtering

- Chebyshev polynomial
- constructed using the recursion relation:

$$
\begin{aligned}
& T_{0}(x)=1, \quad T_{1}(x)=x, \\
& T_{j}(x)=2 x T_{j-1}(x)-T_{j-2}(x)
\end{aligned}
$$

- Error due to truncation
- depends on the width of [a,b], compared to the entire ev range $[-1,+1]$.
- For the domain-wall operator $D^{\dagger} D$, the ev's are in [0,1]. So, stretched to [-1,+1].

Step function approximation

for the lowest bin

- Typical example: 0.8% (1.5\%) when $p=8,000$ and $\delta=0.01$ (0.005).
- The error scales as $\sim 0.06 / p \delta$.

Recipe

As easy as

1. Generate Gaussian random noise vector ξ_{k} and recursively calculate $T_{j}(A) \xi_{k}$
2. Calculate an inner-product $\xi_{k}^{\dagger} T_{j}(A) \xi_{k}$ and store.
3. ... then, the remaining analysis is off-line.

- Ensemble average

$$
\bar{n}[a, b]=\frac{1}{N_{v}} \sum_{k=1}^{N_{v}}\left[\sum_{j=0}^{p} g_{j}^{p} \gamma_{j}\left\langle\xi_{k}^{\dagger} T_{j}(A) \xi_{k}\right\rangle\right]
$$

- Range [a,b] may be specified later. The entire distribution is obtained at once.

Numerical test

Direct comparison on a config with known ev's:
finite temp lattice, $32^{3} \times 12$

Domain-wall operator

- 5D \rightarrow effective 4D operator

$$
D^{(4)}=\left[P^{-1}\left(D^{(5)}(m=1)\right)^{-1} D^{(5)}(m) P\right]_{11}
$$

- Approximately satisfies the Ginsparg-Wilson relation

$$
D \gamma_{5}+\gamma_{5} D=2 a D \gamma_{5} D
$$

- costly, because of PV inverse.
- ev's on a complex circle.
- ev's of $D^{\dagger} D$ are in $[0,1]$.
- then, project on the imaginary
 axis.

Entire spectrum

calculated at once, from a set of inner-products.

different bin sizes from the same set of inner-products.

Low-lying spectrum

Sea quark mass dependence due to the fermion determinants.

Chiral fit

NLO χ PT formula by Damgaard-Fukaya (2009)
$\rho(\lambda)=\frac{\Sigma}{\pi}\left[1-\frac{1}{F^{2}}\left(\sum_{i} \operatorname{Re} \Delta\left(0, M_{v i}^{2}\right)-\operatorname{Re} G\left(0, M_{v v}^{2}, M_{v v}^{2}\right)-16 L_{6} \sum_{i} M_{i i}^{2}\right)\right]_{m_{v}=i \lambda}$

$$
\begin{aligned}
& M_{i j}=\left(m_{i}+m_{j}\right) \Sigma / F^{2} \\
& \Delta\left(0, M^{2}\right)=\frac{M^{2}}{16 \pi^{2}} \ln \frac{M^{2}}{\mu_{\text {sub }}^{2}}+\left(M^{2}\right) \\
& G\left(0, M^{2}, M^{2}\right)=\frac{1}{2}\left[\Delta\left(0, M^{2}\right)+\left(M^{2}-M_{\pi}^{2}\right) \partial_{M^{2}} \Delta\left(0, M^{2}\right)\right]
\end{aligned}
$$

F fixed with 90 MeV .
Minor effect to control the curvature.

Terms accounting for a and m_{s} dependence

$$
\left(1+c_{a} a^{2}\right)\left(1+c_{s}\left(M_{\eta_{s s}}^{2}-M_{\eta_{s s}}^{(\mathrm{phys}) 2}\right)\right) \times \rho(\lambda)
$$

Fit result (1)

Lowest 3 bins ($<15 \mathrm{MeV}$) are averaged before fitting. Effect of residual mass ($\sim 1 \mathrm{MeV}$) is minor.

Fit result (2)

Fit result (3)

Finite volume effect

Finite volume effect invisible.

Chiral condensate

Summary

- Stochastic estimate of the ev count
- Simple and flexible
- Precise calculation of $\rho(\lambda)$ with domain-wall fermions
- Well controlled effect of residual mass.
- Reproduce the spectrum predicted by χ PT.
- Continuum extrapolation essentially flat.
- Among the most precise determination of Σ.

