Determination of chiral condensate from low-lying eigenmodes of Mobius domain-wall Dirac operator

based on arXiv:1607.01099 [hep-lat]

JLQCD collaboration: Guido Cossu (Edinburgh), Hidenori Fukaya (Osaka), <u>Shoji Hashimoto</u>, Takashi Kaneko, Jun Noaki (KEK)
@ Lattice 2016, University of Southampton July 25, 2016

JLQCD collaboration

• Members

- KEK: Y. Aoki, B. Colquhoun, B. Fahy, S. Hashimoto, T. Kaneko, H. Matsufuru, K. Nakayama, M. Tomii
- Osaka: H. Fukaya, T. Onogi
- Kyoto: S. Aoki
- Edinburgh: G. Cossu
- RIKEN: N. Yamanaka
- Wuhan: A. Tomiya
- Machines @ KEK
 Hitachi SR16000 M1
 - IBM Blue Gene /Q

Chiral condensate

- VEV of scalar density operator : $\langle \bar{q}q \rangle$
 - Characterizes the QCD vacuum after the spontaneous chiral symmetry breaking.
- Eigenvalue density of the Dirac operator $\rho(\lambda) = \frac{1}{V} \left\langle \sum_{i} \delta(\lambda - \lambda_{i}) \right\rangle$
 - Related to the chiral condensate in the thermodynamical limit (Banks-Casher relation):

$$\rho(\lambda) = \frac{1}{\pi} \operatorname{Re} \left\langle \overline{q}q \right\rangle_{m_{v} = i\lambda} \quad \Rightarrow \quad \rho(0) = \frac{\Sigma}{\pi}$$

QCD Dirac spectrum

• Our previous work with overlap fermion

JLQCD, PRL101, 122002 (2010)

- 2 and 2+1 flavors
- p and ϵ regimes (various quark masses)
- 16³x48 and 24³x48
- various topological charges
- Damgaard-Fukaya (2009): NLO ChPT in p- and ε -regime
- Limitation due to computational cost: finite lattice spacing, finite volume

New data set of JLQCD

- With Mobius domain-wall fermion (2012~)
 2+1 flavor (uds)
 - Mobius domain-wall fermion [with stout link]
 - residual mass < O(1 MeV)
 - lattice spacing : 1/a = 2.4, 3.6, 4.5 GeV
 - volume : L = 2.7 fm (32³, 48³, 64³ lattices)
 - quark mass : m_{π} = 230, 300, 400, 500 MeV
 - statistics : 10,000 MD time each

 $\beta = 4.17, 1/a \sim 2.4 \text{ GeV}, 32^3 \times 64 (x12)$ $\beta = 4.35, 1/a \sim 3.6 \text{ GeV}, 48^3 \times 96 (x8)$

m _{ud}	m _π [MeV]	MD time
m _s = 0.030		
0.007	310	10,000
0.012	410	10,000
0.019	510	10,000
m _s = 0.040		
0.0035	230	10,000
0.0035 (48 ³ x96)	230	10,000
0.007	320	10,000
0.012	410	10,000
0.019	510	10,000

m _{ud}	m _π [MeV]	MD time
m _s = 0.018		
0.0042	300	10,000
0.0080	410	10,000
0.0120	500	10,000
m _s = 0.025		
0.0042	300	10,000
0.080	410	10,000
0.0120	510	10,000
$\beta = 4.47, 1/2$	a ~ 4.6 G	eV, 64³x128 (x
0.0030	~ 300	10 000

Calculation of eigenvalue distribution

- Explicit calculation of individual ev
 - (with Lanczos or related)
 - Number of ev's to be calculated increases as V.
 - Computational cost increases as $O(V^2)$.

- Stochastic counting
 - Stochastic estimate of ev's in a given interval.
 - Some (controlled) approximation is involved.
 - Computational cost scales O(V).

Previous work

Giusti, Luscher, JHEP 0903, 013 (2009).

 Well established method to count the ev's below some threshold.

$$\mathbb{P}_M \simeq h(\mathbb{X})^4, \qquad \mathbb{X} = 1 - \frac{2M_*^2}{D_m^{\dagger} D_m + M_*^2},$$

- h(X): Step function approximated by Chebyshev polynomial, n~32.
- M_{*} needs to be fixed.
- Cost: $2n \times N_{iter} \sim O(5000) D^{\dagger}D$ multiplication

Chebyshev filtering

Di Napoli, Polizzi, Saad, arXiv:1308.4275 [cs.NA]. See also, Fodor, Holland, Kuti, Mondal, Nogradi, Wong, arXiv:1605.08091 [hep-lat].

- Stochastic counting of ev's of an Hermitian matrix A
 - Number of ev's in a range [a,b]:

$$n[a,b] = \frac{1}{N_{v}} \sum_{k=1}^{N_{v}} \xi_{k}^{\dagger} h(A) \xi_{k}$$

- $-\xi_k: N_v$ (normalized) Gaussian noise vector
- -h(A): filtering function approximated by a Chebyshev polynomial.

$$h(x) = \begin{cases} 1 & \text{for } x \in [a,b] \\ 0 & \text{otherwise} \end{cases} \cong \sum_{j=0}^{p} g_{j}^{p} \gamma_{j} T_{j}(x)$$

Chebyshev filtering

Chebyshev approximation

$$h(x) = \begin{cases} 1 & \text{for } x \in [a,b] \\ 0 & \text{otherwise} \end{cases} \cong \sum_{j=0}^{p} g_{j}^{p} \gamma_{j} T_{j}(x)$$

- Coefficients are uniquely determined for a given [a,b] within [-1,+1].
- Larger the *p*, the approximation is better.
- Unwanted oscillations suppressed by the Jackson term g_i^p , also given once [a,b] is fixed.

Di Napoli, Polizzi, Saad, arXiv:1308.4275 [cs.NA].

Chebyshev filtering

- Chebyshev polynomial
 - constructed using the recursion relation:

$$T_0(x) = 1, \quad T_1(x) = x,$$

 $T_j(x) = 2x T_{j-1}(x) - T_{j-2}(x)$

- Error due to truncation
 - depends on the width of [a,b], compared to the entire ev range [-1,+1].
 - For the domain-wall operator $D^{\dagger}D$, the ev's are in [0,1]. So, stretched to [-1,+1].

Step function approximation

for the lowest bin

- Typical example: 0.8% (1.5%) when p=8,000 and $\delta=0.01$ (0.005).
- The error scales as ~ $0.06/p\delta$.

Recipe

As easy as

- 1. Generate Gaussian random noise vector ξ_k and recursively calculate $T_i(A)$ ξ_k
- 2. Calculate an inner-product $\xi_k^{\dagger} T_i(A) \xi_k$ and store.
- 3. ... then, the remaining analysis is off-line.
- Ensemble average

$$\overline{n}[a,b] = \frac{1}{N_{\nu}} \sum_{k=1}^{N_{\nu}} \left[\sum_{j=0}^{p} g_{j}^{p} \gamma_{j} \left\langle \xi_{k}^{\dagger} T_{j}(A) \xi_{k} \right\rangle \right]$$

Range [a,b] may be specified later. The entire distribution is obtained at once.

Numerical test

Direct comparison on a config with known ev's:

finite temp lattice, 32³x12

Domain-wall operator

• 5D
$$\rightarrow$$
 effective 4D operator
 $D^{(4)} = \left[P^{-1}(D^{(5)}(m=1))^{-1}D^{(5)}(m)P\right]_{11}$

- Approximately satisfies the Ginsparg-Wilson relation $D\gamma_5 + \gamma_5 D = 2aD\gamma_5 D$
- costly, because of PV inverse.
- ev's on a complex circle.
- ev's of $D^{\dagger}D$ are in [0,1].
- then, project on the imaginary axis.

Entire spectrum

calculated at once, from a set of inner-products.

different bin sizes from the same set of inner-products.

S. Hashimoto (KEK/SOKENDAI)

Low-lying spectrum

Sea quark mass dependence due to the fermion determinants.

Chiral fit

NLO χ PT formula by Damgaard-Fukaya (2009)

$$\begin{split} \rho(\lambda) &= \frac{\Sigma}{\pi} \left[1 - \frac{1}{F^2} \left(\sum_{i} \operatorname{Re}\Delta(0, M_{vi}^2) - \operatorname{Re}G(0, M_{vv}^2, M_{vv}^2) - 16L_6 \sum_{i} M_{ii}^2 \right) \right]_{m_v = i\lambda} \\ F \text{ fixed with 90 MeV.} \\ \text{Minor effect to control} \\ \text{the curvature.} \end{split} \qquad \begin{aligned} \Delta(0, M^2) &= \frac{M^2}{16\pi^2} \ln \frac{M^2}{\mu_{sub}^2} + \frac{g_1(M^2)}{g_1(M^2)}, \end{aligned} \qquad \begin{aligned} \text{finite volume} \\ \text{(negligible)} \\ G(0, M^2, M^2) &= \frac{1}{2} \left[\Delta(0, M^2) + (M^2 - M_{\pi}^2) \partial_{M^2} \Delta(0, M^2) \right] \end{aligned}$$

Terms accounting for a and m_s dependence

$$(1+c_a a^2)(1+c_s \left(M_{\eta_{ss}}^2 - M_{\eta_{ss}}^{(\text{phys})2}\right)) \times \rho(\lambda)$$

S. Hashimoto (KEK/SOKENDAI)

Fit result (1)

 $a^{-1} = 2.45 \text{ GeV}$

Lowest 3 bins (< 15 MeV) are averaged before fitting. Effect of residual mass (\sim 1 MeV) is minor.

Fit result (2)

 $a^{-1} = 3.61 \text{ GeV}$

Discretization effect insignificant.

Discretization effect insignificant.

Finite volume effect

Finite volume effect invisible.

Chiral condensate

S. Hashimoto (KEK/SOKENDAI)

Summary

- Stochastic estimate of the ev count
 Simple and flexible
- Precise calculation of $\rho(\lambda)$ with domain-wall fermions
 - Well controlled effect of residual mass.
 - Reproduce the spectrum predicted by χ PT.
 - Continuum extrapolation essentially flat.
 - Among the most precise determination of Σ .