The large N limit of the topological susceptibility of Yang-Mills gauge theory

arXiv:1607.05939

Marco Cè, Miguel García Vera, Leonardo Giusti and Stefan Schaefer

34th International Symposium on Lattice Field Theory Southamptom, 24-30 July 2016

The $U(1)_A$ problem

Chiral symmetry breaking: $SU(3)_L \times SU(3)_R \rightarrow SU(3)_V \rightarrow 8$ Goldstone bosons π , K, η

What happens with $U(1)_A$?

Could the η' be the Goldstone boson associated to this symmetry? $m_{NG} < \sqrt{3}m_{\pi}$, but $m_{\eta'} \approx 958 \,\mathrm{MeV}$ [Weinberg (1975)]

The symmetry is explicitly broken by an anomaly: $\partial_{\mu}J_{\mu5} = -i\frac{N_{fg}^2}{16\pi^2}F_{\mu\nu}^a\tilde{F}_{\mu\nu}^a$ [Adler, Bell (1969)]

Witten - Veneziano, 1979 (Based on the $N \to \infty$, $g^2 N$ fixed limit) At leading order in the 1/N expansion:

 $\chi \neq 0$ for pure YM theoy, but $\chi = 0$ when massless fermions are added (?)

Solution: $m_{\eta'}^2 \propto 1/N$, $\partial_{\mu} J_{\mu 5} \propto 1/N \to \eta'$ is a Goldstone boson at large N

$$\lim_{N\to\infty} m_{\eta'}^2 = \lim_{N\to\infty} \frac{4N_f}{f_\pi^2} \chi_{\rm YM}$$

Miguel García Vera, DESY & HU

The large N limit of the topological susceptibility of Yang-Mills gauge theory

Objective

Our goal: Compute the large N limit of $\chi_{_{\rm YM}}$

Previous work:

- Cooling methods [Lucini et al. (2001), Del Debbio et al. (2002), Lucini et al. (2005)].
- Definition of χ using the index of the Dirac operator [Cundy et al. (2002)] \rightarrow expensive.
- Periodic boundary conditions (PBC) \rightarrow large autocorrelations when approaching the continuum and large N limits [Del Debbio et al. (2002)].

This work:

- We use the theoretically clean definition of χ based on the Yang-Mills gradient flow [Narayanan, Neuberger (2006), Lüscher (2010)].
- We use open boundary conditions (OBC) to avoid the freezing of topology near the continuum [Lüscher, Schaefer (2010)].

Miguel García Vera, DESY & HU

Observables

The topological susceptibility χ^t at flow time t is defined as the two point function of the topological charge density $q^t(x)$

$$\chi^t = \int d^4x \left\langle q^t(x) q^t(0) \right\rangle$$

Provides a correct field theoretical definition of χ in the continuum [Cè et al. (2015)].

• Topological charge density

$$q^{t}(x) = rac{1}{32\pi^{2}}\epsilon_{\mu
u
ho\sigma}\mathrm{Tr}\mathcal{G}_{\mu
u}(x)\mathcal{G}_{
ho\sigma}(x)$$

• Yang-Mills Energy density

$$e^t(x) = rac{1}{2} \mathrm{Tr} \mathcal{G}_{\mu
u}(x) \mathcal{G}_{
ho\sigma}(x)$$

We use the clover definition of $G_{\mu\nu}$ on the lattice.

Miguel García Vera, DESY & HU

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

Observables

Definition of t_0

We want to compute the dimensionless quantity $t_0^2 \chi_{_{\rm YM}}$.

In SU(3), the reference flow time t_0 is defined implicitly by the equation:

$$t^2 \langle e^t \rangle_{t=t_0} = 0.3$$

For general gauge group SU(N):

$$t^2 \langle e^t \rangle = rac{3(N^2-1)}{128\pi^2 N} \lambda_t(q) \left[1 + c_1 \lambda_t(q) + O\left(\lambda_t(q)^2\right)
ight]$$

where $\lambda_t(q) = g^2(q)N$ at the scale $q = (8t)^{-1/2}$.

We define the scale t_0 as:

$$t^2 \langle e^t
angle_{t=t_0} = 0.1125 \, rac{\left(\mathcal{N}^2 - 1
ight)}{\mathcal{N}}$$

Miguel García Vera, DESY & HU

The large N limit of the topological susceptibility of Yang-Mills gauge theory

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

Computation of the topological susceptibility with OBC

Why use OBC? \rightarrow

The freezing of the topology is worse at larger N[Del Debbio et al. (2002), Amato et al. (2015)]

OBC have been shown to reduce $\tau_{\rm int}$ for the slowly decaying topological modes $_{\rm [Lüscher (2011,2013), Amato et al. (2015)]}$

With PBC:

 $\chi = \left\langle Q^2 \right\rangle / V \qquad \rightarrow \qquad$

Not possible with OBC as translation invariance in broken in the time direction.

With OBC: $\bar{q}^t(x_0) = \sum_{\vec{x}} q^t(\vec{x}, x_0)$

[Bruno et al. (2014)]

$$\bar{C}^{t}(\Delta) = \frac{1}{\left(T - 2d - \Delta\right)L^{3}} \sum_{x_{0}=d}^{T-1-d-\Delta} \left\langle \bar{q}^{t}(x_{0})\bar{q}^{t}(x_{0} + \Delta) \right\rangle$$
$$\chi^{t}_{_{\mathrm{YM}}}(r) = \bar{C}^{t}(0) + 2\sum_{\Delta=a}^{r} \bar{C}^{t}(\Delta)$$

Miguel García Vera, DESY & HU

The large N limit of the topological susceptibility of Yang-Mills gauge theory

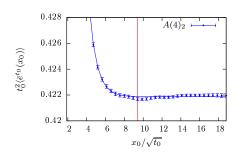
Ensembles

#run	Ν	T/a	L/a	<i>a</i> [fm]	#meas.	#it.
$A(4)_{1}$	4	64	16	0.096	22k	40
$A(4)_{2}$	4	80	20	0.078	41k	80
$A(4)_{3}$	4	96	24	0.065	21k	160
A(5)1	5	64	16	0.095	15k	120
$A(5)_{2}$	5	80	20	0.077	27k	240
A(5)3	5	96	24	0.064	14k	480
$A(6)_1$	6	64	16	0.095	30k	250
$A(6)_{2}$	6	80	20	0.076	17k	500
$A(6)_{3}$	6	96	24	0.063	16k	450

Table: The approximate lattice spacing using $\sqrt{t_0} = 0.166$ fm.

- 1 it. correspond to $n_{ov} \propto a^{-1}$ overrelaxation sweeps followed by one heatbath sweep.
- The updates are done using the Cabibbo-Marinari stategy updating all the N(N-1)/2 SU(2) subgroups of SU(N).

Open boundary effects



We fit the data to a one excited state contribution from the boundary:

$$f(x_0) = A + Be^{-mx_0}$$

Plateau region:

 $|f(d) - A| < 0.25\sigma$

$$d_e = 9.5\sqrt{t_0}$$

 $d_\chi = 7.5\sqrt{t_0}$

For both e and χ , the plateau region is larger or equal than T/2a.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

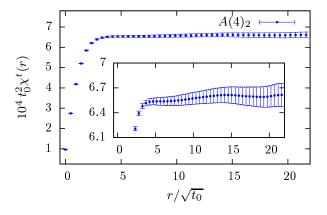
t

r

Systematics from our definition of χ

Is it reasonable to compute $\sum_{\Delta=0}^r \langle \bar{q}^t(0) \bar{q}^t(\Delta) \rangle$ up r = T - 2d?

[Bazavov et al. (2010), Bruno et al. (2014)]



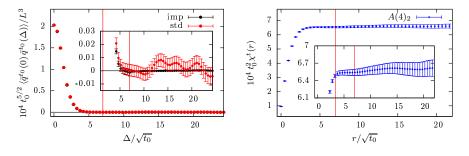
A D > A D > A D > A D >

Systematics from our definition of χ

Is it reasonable to compute $\sum_{\Delta=0}^r \langle \bar{q}^t(0) \bar{q}^t(\Delta) \rangle$ up $r=\mathcal{T}-2d$?

[Bazavov et al. (2010), Bruno et al. (2014)]

SU(3), $\beta = 6.11$, $t_0 = 4.5776(15)$



Using multilevel algorithms [MGV, Schaefer (2016)]

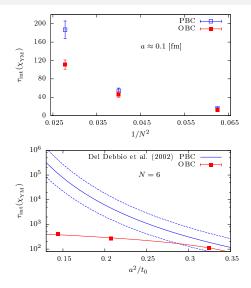
 \rightarrow $r = 7.0\sqrt{t_0}$

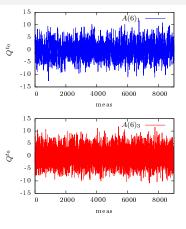
・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Miguel García Vera, DESY & HU

The large N limit of the topological susceptibility of Yang-Mills gauge theory

Autocorrelations



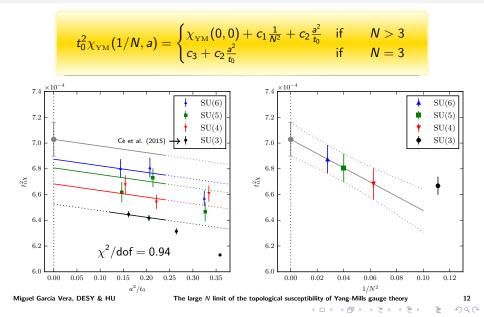


Simulations at fine lattice spacings are only possible due to the use of OBC.

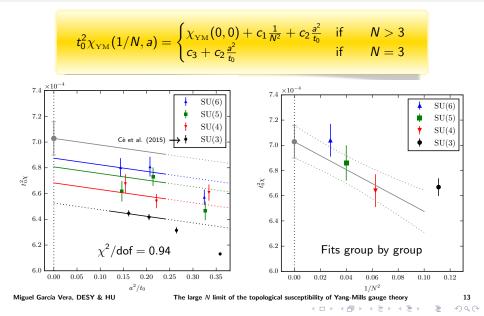
イロト イポト イヨト イヨ

Þ

Large-N and continuum limits

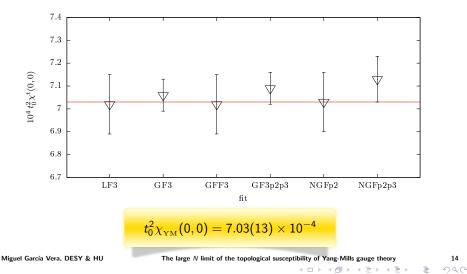


Large-N and continuum limits

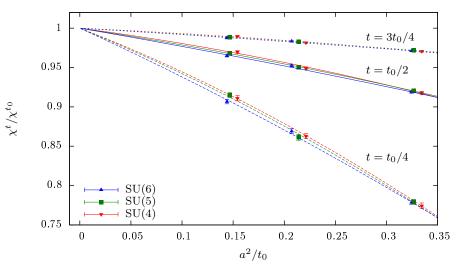


Large-*N* and continuum limits

Different fit strategies give compatible results.



t dependent discretization effects



Miguel García Vera, DESY & HU

The large N limit of the topological susceptibility of Yang-Mills gauge theory

・ロト ・ 雪 ト ・ ヨ ト

Э

Conclusions

- We have computed the large N limit of $\chi_{_{\rm YM}}$ with an unprecedented accuracy thanks to a solid definition through the YM Gradient flow and the use of open boundary conditions (OBC).
- By using OBC we were able to go to finer lattice spacings and keep the autocorrelations under control.
- Through a careful study of all the systematic effects we quote a result in the large N and continuum limit with a percent level accuracy.
- The value computed for $t_0^2 \chi_{_{\rm YM}} = 7.03(13) \times 10^{-4}$ is a new verification of the Witten-Veneziano relation that gives mass to the η' meson.
- We find the large N effects to be small at our level of accuracy.

Thank you very much for your attention!

Miguel García Vera, DESY & HU

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()