Calculation of hadronic matrix elements contributing to the $B_{s}-\bar{B}_{s}$ width difference

Matthew Wingate
DAMTP, University of Cambridge
Lattice 2016, Southampton, UK
Work done in collaboration with
CTH Davies, CJ Monahan, GP Lepage, J Shigemitsu (HPQCD)

Outline

- B-mixing description and Heavy Quark Expansion (HQE)
- Status of Standard Model calculation
- Our calculation
- To-do list

B mixing

Wigner-Weisskopf approximation

$$
i \frac{d}{d t}\binom{\left|B^{0}(t)\right\rangle}{\left|\bar{B}^{0}(t)\right\rangle}=\left(M-\frac{i}{2} \Gamma\right)\binom{\left|B^{0}(0)\right\rangle}{\left|\bar{B}^{0}(0)\right\rangle}
$$

Flavour basis \neq mass basis $\Rightarrow M \& \Gamma$ non-diagonal
Mixing governed by 3 parameters:

$$
\left|M_{12}\right| \quad\left|\Gamma_{12}\right| \quad \phi=\arg \left(-\frac{M_{12}}{\Gamma_{12}}\right)
$$

Observables

$$
\Delta M=2\left|M_{12}\right| \quad \Delta \Gamma=2\left|\Gamma_{12}\right| \cos \phi \quad a_{\mathrm{fs}}=\frac{\Delta \Gamma}{\Delta M} \tan \phi
$$

SM mixing

Integrate out W and t
\Downarrow

SM mixing

Mass difference

Oscillations governed by Hermitian part: dominated by local $\Delta B=2$ matrix el.

$$
\begin{gathered}
\Delta M_{s}=\frac{1}{2 m_{B_{s}}}\left\langle\bar{B}_{s}\right| H_{\mathrm{eff}}^{\Delta B=2}\left|B_{s}\right\rangle \\
H_{\mathrm{eff}}^{\Delta B=2}=\frac{G_{F}^{2} m_{W}^{2}}{4 \pi^{2}}\left(V_{t s}^{*} V_{t b}\right)^{2} \sum_{i=1}^{5} C_{i} Q_{i} \\
Q_{1}=\left(\bar{b}^{\alpha} \gamma^{\mu}\left(1-\gamma^{5}\right) s^{\alpha}\right)\left(\bar{b}^{\beta} \gamma_{\mu}\left(1-\gamma^{5}\right) s^{\beta}\right) \\
Q_{2}=\left(\bar{b}^{\alpha}\left(1-\gamma^{5}\right) s^{\alpha}\right)\left(\bar{b}^{\beta}\left(1-\gamma^{5}\right) s^{\beta}\right) \\
Q_{3}=\left(\bar{b}^{\alpha}\left(1-\gamma^{5}\right) s^{\beta}\right)\left(\bar{b}^{\beta}\left(1-\gamma^{5}\right) s^{\alpha}\right)
\end{gathered} \quad Q_{4}=\left(\bar{b}^{\alpha}\left(1-\gamma^{5}\right) s^{\alpha}\right)\left(\bar{b}^{\beta}\left(1+\gamma^{5}\right) s^{\beta}\right) .\left(\bar{b}^{\alpha}\left(1-\gamma^{5}\right) s^{\beta}\right)\left(\bar{b}^{\beta}\left(1+\gamma^{5}\right) s^{\alpha}\right) .
$$

In the Standard Model only Q_{1} enters ΔM_{s}.

Recent work: HPQCD (prelim) arXiv:1411.6989, FNAL/MILC arXiv:1602.03560v2, HPQCD (in progress)

Lifetime difference \& HQE

- Γ_{12} from imaginary part (optical theorem)
- Large momentum through loop

- Operator product expansion: Heavy Quark Expansion (HQE), quark-hadron duality

$$
\Gamma_{21}=\frac{1}{2 m_{B_{s}}}\left\langle\bar{B}_{s}\right| \mathscr{T}\left|B_{s}\right\rangle
$$

$$
\mathscr{T}=\operatorname{Im} i \int d^{4} x \mathcal{T} H_{\mathrm{eff}}^{\Delta B=1}(x) H_{\mathrm{eff}}^{\Delta B=1}(0)
$$

$$
\mathscr{T}=-\frac{G_{F}^{2} m_{b}^{2}}{12 \pi}\left(V_{c b}^{*} V_{c s}\right)^{2}\left[F\left(z, \mu_{2}\right) Q_{1}\left(\mu_{2}\right)+F_{S}\left(z, \mu_{2}\right) Q_{2}\left(\mu_{2}\right)\right]
$$

HQE expressions

$$
\Gamma_{12}^{s}=-\left[\lambda_{c}^{2} \Gamma_{12}^{c c}+2 \lambda_{c} \lambda_{u} \Gamma_{12}^{u c}+\lambda_{u}^{2} \Gamma_{12}^{u u}\right] \quad \text { with } \lambda_{i}=V_{i s}^{*} V_{i b}
$$

Leading order:

$$
\Gamma_{12}^{c c}=\frac{G_{F}^{2} m_{b}^{2}}{24 \pi m_{B_{s}}}\left[\left(G+\frac{1}{2} \alpha_{2} G_{S}\right)\left\langle\bar{B}_{s}\right| Q_{1}\left|B_{s}\right\rangle+\alpha_{1} G_{S}\left\langle\bar{B}_{s}\right| Q_{3}\left|B_{s}\right\rangle\right]+\tilde{\Gamma}_{12,1 / m_{b}}^{c c}
$$

where lattice QCD gives the matrix elements of Q_{1} and Q_{3}.
G's depend on $\alpha_{s}, m_{b}, m_{c} / m_{b}, \mu_{1}, \mu_{2} \quad$ Beneke, et al. PLB459, hep-ph/9808385

HQE expressions

Dominant

$$
\left.\Gamma_{12}^{s}=-\lambda_{c}^{2} \Gamma_{12}^{c c}+2 \lambda_{c} \lambda_{u} \Gamma_{12}^{u c}+\lambda_{u}^{2} \Gamma_{12}^{u u}\right] \quad \text { with } \lambda_{i}=V_{i s}^{*} V_{i b}
$$

Leading order:

$$
\Gamma_{12}^{c c}=\frac{G_{F}^{2} m_{b}^{2}}{24 \pi m_{B_{s}}}\left[\left(G+\frac{1}{2} \alpha_{2} G_{S}\right)\left\langle\bar{B}_{s}\right| Q_{1}\left|B_{s}\right\rangle+\alpha_{1} G_{S}\left\langle\bar{B}_{s}\right| Q_{3}\left|B_{s}\right\rangle\right]+\tilde{\Gamma}_{12,1 / m_{b}}^{c c}
$$

where lattice QCD gives the matrix elements of Q_{1} and Q_{3}.
G's depend on $\alpha_{s}, m_{b}, m_{c} / m_{b}, \mu_{1}, \mu_{2} \quad$ Beneke, et al. PLB459, hep-ph/9808385

NLO

$$
\tilde{\Gamma}_{12,1 / m_{b}}^{c c}=\frac{G_{F}^{2} m_{b}^{2}}{24 \pi m_{B_{s}}}\left\{g_{0}^{c c}\left\langle\bar{B}_{s}\right| R_{0}\left|B_{s}\right\rangle+\sum_{j=1}^{3}\left[g_{j}^{c c}\left\langle\bar{B}_{s}\right| R_{j}\left|B_{s}\right\rangle+\tilde{g}_{j}^{c c}\left\langle\bar{B}_{s}\right| \tilde{R}_{j}\left|B_{s}\right\rangle\right]\right\}
$$

$g^{c c}$'s depend on m_{d} / m_{b}

$$
\begin{aligned}
& R_{0}=Q_{2}+\alpha_{1} Q_{3}+\frac{1}{2} \alpha_{2} Q_{1} \\
& R_{1}=\frac{m_{s}}{m_{b}}\left(\bar{b}^{\alpha}\left(1-\gamma^{5}\right) s^{\alpha}\right)\left(\bar{b}^{\beta}\left(1+\gamma^{5}\right) s^{\beta}\right)=\frac{m_{s}}{m_{b}} Q_{4} \\
& R_{2}=\frac{1}{m_{b}^{2}}\left(\bar{b}^{\alpha} \overleftarrow{D}_{\rho} \gamma^{\mu}\left(1-\gamma^{5}\right) D^{\rho} s^{\alpha}\right)\left(\bar{b}^{\beta} \gamma_{\mu}\left(1-\gamma^{5}\right) s^{\beta}\right) \\
& R_{3}=\frac{1}{m_{b}^{2}}\left(\bar{b}^{\alpha} \overleftarrow{D}_{\rho}\left(1-\gamma^{5}\right) D^{\rho} s^{\alpha}\right)\left(\bar{b}^{\beta}\left(1-\gamma^{5}\right) s^{\beta}\right)
\end{aligned}
$$

Tilde'd operators correspond to mixing color indices

Status

Artuso, Borissov, Lenz, arXiv:1511.09466v1 $\Delta \Gamma_{s}^{\mathrm{SM}, 2015}=0.088(20) \mathrm{ps}^{-1}$

Plot and updated SM prediction from MJ Kirk, Lattice 2016 poster

Heavy Flavour Averaging Group

Dominent SM uncertainties:

- 15% due to matrix element of R_{2} (bag factor $=1.0 \pm 0.5$, for one definition of m_{b})
- 14% due to matrix element of Q_{1} (FLAG, but see new FNAL/MILC)
- 8% due to renormalization scale

Status

Artuso, Borissov, Lenz, arXiv:1511.09466v1 $\Delta \Gamma_{s}^{S M, 2015}=0.088(20) \mathrm{ps}^{-1}$

Plot and updated SM prediction from MJ Kirk, Lattice 2016 poster

Heavy Flavour Averaging Group

Dominent SM uncertainties:

- 15% due to matrix element of R_{2} (bag factor $=1.0 \pm 0.5$, for one definition of m_{b})
- 14% due to matrix element of Q_{1} (FLAG, but see new FNAL/MILC)
- 8% due to renormalization scale

Status

Artuso, Borissov, Lenz, arXiv:1511.09466v1 $\Delta \Gamma_{s}^{S M, 2015}=0.088(20) \mathrm{ps}^{-1}$

Plot and updated SM prediction from MJ Kirk, Lattice 2016 poster

Heavy Flavour Averaging Group

Dominent SM uncertainties:

- 15% due to matrix element of R_{2} (bag factor $=1.0 \pm 0.5$, for one definition of m_{b})
- 14% due to matrix element of Q_{1} (FLAG, but see new FNAL/MILC)
- 8% due to renormalization scale

HPQCD calculation

- Extends ongoing HPQCD calculation of matrix elements of dimension-6 $\Delta B=2$ operators ($Q_{1} \ldots Q_{5}$)
- MILC highly improved staggered quark (HISQ) gauge field configurations ($2+1+1$ sea quarks)
- Nonrelativistic bottom quark, HISQ strange quark

Matching schemes

Continuum QCD

$$
\left\langle Q_{i}\right\rangle_{\overline{\mathrm{MS}}}=\langle\hat{Q} i\rangle_{L}+\langle\hat{Q} i 1\rangle_{L}+\ldots
$$

where lattice NRQCD is a $1 / \mathrm{M}$ expansion.

$$
\begin{aligned}
& \hat{Q}_{i}=\left(\bar{\Psi}_{Q} \Gamma_{1} \Psi_{q}\right)\left(\bar{\Psi}_{\bar{Q}} \Gamma_{2} \Psi_{q}\right)+\left(\bar{\Psi}_{\bar{Q}} \Gamma_{1} \Psi_{q}\right)\left(\bar{\Psi}_{Q} \Gamma_{2} \Psi_{q}\right) . \\
& \hat{Q}_{Q} i 1= \frac{1}{2 M}\left[\left(\bar{\nabla}_{\Psi} \bar{\Psi}_{Q} \cdot \boldsymbol{\gamma} \Gamma_{1} \Psi_{q}\right)\left(\bar{\Psi}_{\bar{Q}} \Gamma_{2} \Psi_{q}\right)\right. \\
&+\left(\bar{\Psi}_{Q} \Gamma_{1} \Psi_{q}\right)\left(\bar{\nabla}_{\bar{Q}} \cdot \boldsymbol{\gamma} \Gamma_{2} \Psi_{q}\right) \\
&+\left(\bar{\nabla} \bar{\Psi}_{\bar{Q}} \cdot \boldsymbol{\gamma} \Gamma_{1} \Psi_{q}\right)\left(\bar{\Psi}_{Q} \Gamma_{2} \Psi_{q}\right) \\
&\left.+\left(\bar{\Psi}_{\bar{Q}} \bar{\Gamma}_{1} \Psi_{q}\right)\left(\bar{\nabla} \bar{\Psi}_{Q} \cdot \boldsymbol{\gamma} \Gamma_{2} \Psi_{q}\right)\right] .
\end{aligned}
$$

Perturbative matching

Match continuum and lattice at $O\left(a_{\mathrm{s}}\right)$

$$
\left\langle Q_{i}\right\rangle_{\overline{\mathrm{MS}}}=\langle\hat{Q} i\rangle+\alpha_{s} \rho_{i j}\langle\hat{Q} j\rangle+\langle\hat{Q} i 1\rangle^{\mathrm{sub}}
$$

taking into account power-law "mixing down" at $O\left(\frac{\alpha_{s}}{a M}\right)$

$$
\langle\hat{Q} i 1\rangle^{\text {sub }}=\langle\hat{Q} i 1\rangle-\alpha_{s} \zeta_{i j}\langle\hat{Q} j\rangle
$$

Monahan, Gámiz, Horgan, Shigemitsu, PRD90 (2014), arXiv:1407.4040
Similarly we have now computed coefficients in

$$
\left\langle\hat{R}_{i}\right\rangle^{\text {sub }}=\left\langle\hat{R}_{i}\right\rangle-\alpha_{s} \xi_{i j}\langle\hat{Q} j\rangle
$$

In fact, $\left|\rho_{i j}\right|,\left|\zeta_{i j}\right|,\left|\xi_{i j}\right|<1$ for lattices in use here.

Correlation functions

Strange quark "source" at operator O.
Derivative source (finite difference) for R operators

Dimension-7

Derivative part of R_{2} and R_{3}

$$
\frac{1}{m_{b}^{2}}\left(\bar{b}^{\alpha} \overleftarrow{D}_{\rho} \Gamma D^{\rho} s^{\alpha}\right)=\frac{1}{m_{b}^{2}}\left(\bar{b}^{\alpha} \overleftarrow{D_{0}} \Gamma D^{0} s^{\alpha}\right)+\mathcal{O}\left(\frac{1}{m_{b}^{2}}\right)
$$

Using EOM

$$
\bar{b} \overleftarrow{D}_{0}= \pm m_{b} \bar{b} \gamma_{0} \quad \text { and } \quad i \gamma_{0} D^{0} s=-i\left(\vec{\gamma}_{M} \cdot \vec{D}\right) s=\left(\vec{\gamma}_{E} \cdot \vec{D}\right) s
$$

we have

$$
R_{2,3}= \pm \frac{1}{m_{b}}\left(\bar{b}_{\alpha} \Gamma \gamma_{0}(\vec{\gamma} \cdot \vec{D}) s_{\alpha}\right)\left(\bar{b}_{\beta} \Gamma s_{\beta}\right)
$$

\pm correspond to outgoing b quark/incoming anti-b quark

Computation

Staggered \& naive propagators from local source

$$
\begin{aligned}
& K(x, y) g(y, z)=\delta(x, z) \\
& G(y, z)=\Omega(x) g(y, z) \Omega^{\dagger}(z) \quad \Omega(x)=\prod_{\mu=0}^{3}\left(\gamma_{\mu}\right)^{x_{\mu} / a}
\end{aligned}
$$

Staggered \& naive propagators from derivative source

$$
\begin{gathered}
K(x, y) g^{(k)}(y, z)=\frac{1}{2}\left[\delta(x, z+\hat{k}) U_{k}^{\dagger}(z)-\delta(x, z-\hat{k}) U_{k}(z-\hat{k})\right] \\
G^{(k)}(y, z)=\Omega(x) g^{(k)}(y, z) \Omega^{\dagger}(z \pm \hat{k}) \quad \hat{k}=e_{1}, e_{2}, e_{3}
\end{gathered}
$$

4 inversions to get necessary strange quark propagators

Correlation functions

Correlation functions

$$
\begin{gathered}
C_{a b}^{3 \mathrm{pt}}(t, T)=\sum_{i, j} X_{a, i} V_{n n, i j} X_{b, j} \exp \left(-E_{i} t\right) \exp \left(-E_{j}(T-t)\right) \\
\quad X_{a, 0} V_{n n, 00} X_{b, 0}=\frac{\left.\left.\langle 0| \Phi_{a}\left|B_{s}\right\rangle\right) \frac{\left.\left(\bar{B}_{s}\left|a^{6} O_{c o m p}\right| B_{s}\right\rangle\right)}{\left(2 m_{B_{s}} a^{3}\right)^{2}}\right)\left\langle B_{s}\right| \Phi_{b}|0\rangle}{}
\end{gathered}
$$

Remove unwanted factors using 2-point functions

$$
\begin{aligned}
& C_{a b}^{2 \mathrm{pt}}(t)=\sum_{i} X_{a, i} X_{b, i} \exp \left(-E_{i} t\right) \\
& X_{a, 0} X_{b, 0}=\frac{\langle 0| \Phi_{a}\left|B_{s}\right\rangle\left\langle B_{s}\right| \Phi_{b}|0\rangle}{2 m_{B_{s}} a^{3}}
\end{aligned}
$$

Status

Set	Label	β	a / fm	$a m_{l}$	$a m_{s}$	$a m_{c}$	$N_{s}^{3} \times N_{t}$	$\#$
1	VC5	5.8	$0.1474(5)(14)(2)$	0.013	0.0650	0.838	$16^{3} \times 48$	1020
3	VCp	5.8	$0.1450(3)(14)(2)$	0.00235	0.0647	0.831	$32^{3} \times 48$	1000
4	C5	6.0	$0.1219(2)(9)(2)$	0.0102	0.0509	0.635	$24^{3} \times 64$	1052
6	Cp	6.0	$0.1189(2)(9)(2)$	0.00184	0.0507	0.628	$48^{3} \times 64$	1000
7	F5	6.3	$0.0873(2)(5)(1)$	0.0074	0.037	0.440	$32^{3} \times 96$	1008

- Matrix elements computed on 2 ensembles (VC5, C5)
- will do 5 ensembles: 3 lattice spacings, including some with physically light quark masses
- Statistical errors about 10% for $\left\langle R_{i}\right\rangle^{\text {sub }}$
- Systematic uncertainty dominated by tree-level matching between lattice and continuum: 20-30\%

Rough numerics

$$
\Delta \Gamma_{s}=\left[0.071(11)\left(\frac{\left\langle Q_{1}\right\rangle}{3 \mathrm{GeV}^{4}}\right)+0.035(6)\left(\frac{\left\langle Q_{3}\right\rangle}{0.8 \mathrm{GeV}^{4}}\right)-0.027(4)\left(\frac{\left\langle R_{2}\right\rangle}{-0.3 \mathrm{GeV}^{4}}\right)\right] \mathrm{ps}^{-1}
$$

Derived from Lenz \& Nierste, JHEP 06 (2007), arXiv:hep-ph/0612167

FNAL/MILC arXiv:1602.03560v2: $\left\langle Q_{1}\right\rangle @ 6 \% \quad\left\langle Q_{3}\right\rangle @ 13 \%$

Reducing uncertainty ${ }^{*}$ on $\left\langle R_{2}\right\rangle @ 50 \% \rightarrow 25 \% \quad \Longrightarrow \quad \Delta \Gamma_{s} @ 25 \% \rightarrow 18 \%$
[Figures here are rough, e.g. prefactors above may be out of date.]

* 50% estimate from VSA, to be replaced by 25% LQCD calculation

To do list

- Double-check everything
- Extend to fine lattice, physical mass sea quarks
- Full error analysis

Stay tuned

Error reduction $1999 \rightarrow 2006$

Lenz \& Nierste, JHEP 06 (2007) 072

