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Outline

• B-mixing description and Heavy Quark Expansion (HQE) 

• Status of Standard Model calculation 

• Our calculation 

• To-do list
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Mass difference
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1
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Q5 = (b̄↵(1� �5)s�)(b̄�(1 + �5)s↵)

Q4 = (b̄↵(1� �5)s↵)(b̄�(1 + �5)s�)

In the Standard Model only Q1 enters ΔMs.

Recent work: HPQCD (prelim) arXiv:1411.6989,   FNAL/MILC arXiv:1602.03560v2, HPQCD (in progress)

Oscillations governed by Hermitian part: dominated by local ΔB = 2 matrix el.
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Lifetime difference & HQE

• Γ12 from imaginary part (optical theorem) 

• Large momentum through loop 

• Operator product expansion: Heavy 
Quark Expansion (HQE), quark-hadron 
duality
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HQE expressions

Expressions from Lenz & Nierste, JHEP 06 (2007), hep-ph/0612167
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quantities in the Bd-system. In section 4 we show how the expressions for the mixing
quantities change in the presence of new physics. Here we discuss how to combine different
present and future measurements to constrain |M s

12| and φs and advocate a novel method to
display the constraints on possible new short-distance physics in Bs−Bs mixing. Section 5
gives a road map for future measurements and calculations and section 6 summarises our
results.

2. Improved prediction of Γs
12

We write Γs
12 as [21]

Γs
12 = −

[
λ2

c Γcc
12 + 2λc λu Γuc

12 + λ2
u Γuu

12

]
(2.1)

= −
[
λ2

t Γcc
12 + 2λt λu (Γcc

12 − Γuc
12) + λ2

u (Γcc
12 − 2Γuc

12 + Γuu
12 )
]

(2.2)

with the CKM factors λi = V ∗
isVib for i = u, c, t. In eq. (2.2) we have eliminated λc in favour

of λt using λu + λc + λt = 0 to prepare for the study of Γs
12/M

s
12. Since |λu|≪ |λt| ≈ |λc|,

Γcc
12 clearly dominates Γs

12. For ab = cc, uc, uu we write [19, 21]

Γab
12 =

G2
F m2

b

24πMBs

[
Gab ⟨Bs|Q|Bs⟩ − Gab

S ⟨Bs|QS |Bs⟩
]

+ Γab
12,1/mb

(2.3)

The coefficients Gab and Gab
S are further decomposed as

Gab = F ab + P ab, Gab
S = −F ab

S − P ab
S . (2.4)

Here F ab and F ab
S are the contributions from the current-current operators Q1,2 while the

small coefficients P ab and P ab
S stem from the penguin operators Q3−6 and Q8. (Note that

in [19], where only the dominant Γcc
12 was considered, these coefficients had no superscript

’cc’.) Numerical cancellations render F cc small with |F cc/F cc
S | ≈ 0.03 which explains the

small coefficient of B in eq. (1.9).
We parameterise the matrix element of QS as

⟨Bs|QS |Bs⟩ = −5
3
M2

Bs
f2

Bs
B′

S . (2.5)

Formulae for physical quantities are more compact when expressed in terms of B′
S rather

than the conventionally used bag parameter BS . The two parameters are related as

B′
S =

M2
Bs

(mb + ms)2
BS . (2.6)

In the vacuum insertion approximation (VIA) the bag factors B and BS are equal to one.
Throughout this paper we use the MS scheme as defined in [19, 21] for all operators.
Therefore the masses mb and ms appearing in eq. (2.6) correspond to the MS scheme as
well.

Γcc
12,1/mb

comprises effects suppressed by Λ/mb. We will discuss it later, after trans-
forming to our new operator basis.

– 5 –

Leading order:

where lattice QCD gives the matrix elements of Q1 and Q3.
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�
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G’s depend on αs,mb, mc/mb, μ1, μ2 Beneke, et al. PLB459, hep-ph/9808385

http://arxiv.org/abs/hep-ph/0612167
http://arXiv.org/abs/hep-ph/9808385
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NLO
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Tilde’d operators  correspond to mixing color indices



Status

• 15% due to matrix element of R2 (bag factor = 1.0 ± 0.5, for one definition of mb) 
• 14% due to matrix element of Q1 (FLAG, but see new FNAL/MILC) 

• 8% due to renormalization scale

Artuso, Borissov, Lenz, arXiv:1511.09466v1

Dominent SM uncertainties:

Heavy Flavour Averaging Group
��SM,2015

s = 0.088(20) ps�1

Plot and updated SM prediction from 
MJ Kirk, Lattice 2016 poster

http://arxiv.org/abs/1511.09466
http://www.slac.stanford.edu/xorg/hfag/
https://conference.ippp.dur.ac.uk/event/470/session/18/contribution/24
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This 
work
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HPQCD calculation

• Extends ongoing HPQCD calculation of matrix elements 
of dimension-6 ΔB=2 operators (Q1…Q5) 

• MILC highly improved staggered quark (HISQ) gauge 
field configurations (2+1+1 sea quarks) 

• Nonrelativistic bottom quark, HISQ strange quark



Matching schemes

which we represent diagrammatically in Fig. 1. The Dirac
operators Γ1;2 represent the operator insertions correspond-
ing to Eqs. (1) to (7). For matrix elements of Q3, Q5, and
Q7, we have instead

hq̄A;QDjðΨ̄i
bΓ1Ψ

j
qÞðΨ̄j

bΓ2Ψi
qÞjQ̄B; qCitree

¼ δADδCB½ðūQΓ1uqÞðv̄QΓ2vqÞ þ ðūQΓ2uqÞðv̄QΓ1vqÞ&
− δABδCD½ðūQΓ1vqÞðv̄QΓ2uqÞ þ ðūQΓ2vqÞðv̄QΓ1uqÞ&:

ð11Þ

Radiative corrections induce mixing between the four-
fermion operators, which we write as

hQiiMS ¼ hQiitree þ αscijhQjið0Þtree; ð12Þ

where the superscript (0) denotes matrix elements con-
structed using spinors that obey

ūQγ0 ¼ ūQ; and v̄Qγ0 ¼ −v̄Q; ð13Þ

in order to match to the effective theory. In principle the
product cijhQjið0Þtree is a sum over all operators Qj that mix
with Qi. In practice, however, only two such operators
appear: for example, for Q1 we have

hQ1iMS ¼ hQ1itree þ αsc11hQ1ið0Þtree þ αsc12hQ2ið0Þtree:

ð14Þ

In the following, we leave this sum implicit.

B. On the lattice

In the effective theory formalism of NRQCD, the heavy
quarks and antiquarks are treated as distinct quark species.
We separate the quark fields that create heavy quarks,
which we denote Ψ̄Q, from the fields that annihilate heavy
antiquarks, which we represent by Ψ̄Q̄.

The two-component heavy quark field is obtained from
the four-component QCD quark field, Ψ̄b, via the Foldy-
Wouthuysen-Tani transformation (see, for example, [30]),

Ψ̄b ¼ Ψ̄Q

!
1þ 1

2M
γ · ∇⃖þOð1=M2Þ

"
; ð15Þ

where the arrow indicates that the derivative acts on the
heavy quark field to the left. We insert this expansion into
the four-fermion operators of Eqs. (1) to (7) to determine
the appropriate NRQCD operators. We see immediately
that, at leading order in 1=M, we need operators of the form

Q̂i ¼ ðΨ̄QΓ1ΨqÞðΨ̄Q̄Γ2ΨqÞ þ ðΨ̄Q̄Γ1ΨqÞðΨ̄QΓ2ΨqÞ:
ð16Þ

We obtain the OðΛQCD=MÞ corrections by introducing
the operators

Q̂i1 ¼ 1

2M
½ð ~∇Ψ̄Q · γΓ1ΨqÞðΨ̄Q̄Γ2ΨqÞ

þ ðΨ̄QΓ1ΨqÞð ~∇Ψ̄Q̄ · γΓ2ΨqÞ

þ ð ~∇Ψ̄Q̄ · γΓ1ΨqÞðΨ̄QΓ2ΨqÞ

þ ðΨ̄Q̄Γ1ΨqÞð ~∇Ψ̄Q · γΓ2ΨqÞ&: ð17Þ

We denote the matrix elements of the effective theory by

hQ̂ii ¼ houtjQ̂ijini; and hQ̂i1i ¼ houtjQ̂i1jini; ð18Þ

where now the “in” and “out” states are understood to be an
incoming NRQCD antiquark and HISQ quark and an
outgoing NRQCD quark and HISQ antiquark, respectively.
Radiative corrections induce mixing between these oper-
ators, with mixing coefficients clattij , and we obtain

hQ̂ii ¼ hQ̂iið0Þtree þ αsclattij hQ̂jið0Þtree; ð19Þ

and similarly

hQ̂i1i ¼ hQ̂i1ið0Þtree þ αsζlattij hQ̂jið0Þtree: ð20Þ

We ignore the one loop corrections to hQ̂i1ið0Þtree, which only
arise at OðαsΛQCD=MbÞ in the matching procedure.
As discussed in more detail in [19], the mixing coef-

ficients ζlattij describe the “mixing down” of dimension-
seven operators Q̂i1 onto dimension-six operators Q̂j.
In the next section we outline the matching procedure

before describing the calculation of the lattice mixing
coefficients.

III. THE MATCHING PROCEDURE

We now relate the matrix elements of the NRQCD-
HISQ operators, which ultimately will be determined

BA

CD

A

D

B

C

FIG. 1. Tree-level diagrams representing the matrix elements of
operators Q1, Q2, Q4, and Q6. The incoming state is a heavy
antiquark and a light quark and the outgoing state is a heavy
quark and a light antiquark. The letters A, B, C, and D are color
indices and correspond to the conventions of Eq. (10).
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Continuum QCD Lattice NRQCD

hQiiMS = hQ̂iiL + hQ̂i1iL + . . .

where lattice NRQCD is a 1/M expansion.



Perturbative matching

hQiiMS = hQ̂ii+ ↵s⇢ijhQ̂ji+ hQ̂i1isub

hQ̂i1isub = hQ̂i1i � ↵s⇣ijhQ̂ji

hR̂iisub = hR̂ii � ↵s⇠ijhQ̂ji

Match continuum and lattice at O(αs)

taking into account power-law “mixing down” at

Similarly we have now computed coefficients in

Monahan, Gámiz, Horgan, Shigemitsu, PRD90 (2014), arXiv:1407.4040

O
⇣ ↵s

aM

⌘

for lattices in use here.|⇢ij |, |⇣ij |, |⇠ij | < 1In fact, 

http://arxiv.org/abs/1704.4040


Correlation functions
t

T

t
x

ty

O

BsB̄s

Strange quark “source” at operator O. 
Derivative source (finite difference) for R operators



Using EOM

Dimension-7

1

m2
b
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D⇢�D
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m2
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D0�D

0s↵) +O
✓
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◆
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D0 = ±mbb̄ �0 i�0D

0s = �i(~�M · ~D)s = (~�E · ~D)s

R2,3 = ± 1

mb
(b̄↵��0(~� · ~D)s↵)(b̄��s�)

Derivative part of R2 and R3

and

we have

± correspond to outgoing b quark/incoming anti-b quark



Computation

K(x, y)g(y, z) = �(x, z)

K(x, y)g(k)(y, z) =
1

2

h
�(x, z + k̂)U †

k(z)� �(x, z � k̂)Uk(z � k̂)
i

Staggered & naive propagators from local source

Staggered & naive propagators from derivative source

G(y, z) = ⌦(x)g(y, z)⌦†(z)

G

(k)(y, z) = ⌦(x)g(k)(y, z)⌦†(z ± k̂)

⌦(x) =
3Y

µ=0

(�
µ

)xµ/a

4 inversions to get necessary strange quark propagators

k̂ = e1, e2, e3



Correlation functions
t
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C3pt
ab (t, T ) =

X
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Xa,iVnn,ijXb,j exp(�Eit) exp(�Ej(T � t))



Correlation functions

C2pt
ab (t) =

X

i

Xa,iXb,i exp(�Eit)

C3pt
ab (t, T ) =

X

i,j

Xa,iVnn,ijXb,j exp(�Eit) exp(�Ej(T � t))

X
a,0Vnn,00Xb,0 =

h0|�
a

|B
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ihB̄
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|a6O
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b

|0i
(2m

Bsa
3)2

Xa,0Xb,0 =
h0|�a|BsihBs|�b|0i

2mBsa
3

Remove unwanted factors using 2-point functions



Status

• Matrix elements computed on 2 ensembles (VC5, C5) 

• will do 5 ensembles: 3 lattice spacings, including some with 
physically light quark masses 

• Statistical errors about 10% for 

• Systematic uncertainty dominated by tree-level matching between 
lattice and continuum: 20-30%

hRiisub

Table 1: MILC nf = 2 + 1 + 1 HISQ configurations to be used. Masses listed are sea quark

masses. Set number is as in [3]. Lattice spacing determined using the ⌥ splittings, as in Table

I of [3], errors are statistical, NRQCD systematic, experiment respectively.
Set Label � a/fm aml ams amc N3

s ⇥Nt #

1 VC5 5.8 0.1474(5)(14)(2) 0.013 0.0650 0.838 163 ⇥ 48 1020

3 VCp 5.8 0.1450(3)(14)(2) 0.00235 0.0647 0.831 323 ⇥ 48 1000

4 C5 6.0 0.1219(2)(9)(2) 0.0102 0.0509 0.635 243 ⇥ 64 1052

6 Cp 6.0 0.1189(2)(9)(2) 0.00184 0.0507 0.628 483 ⇥ 64 1000

7 F5 6.3 0.0873(2)(5)(1) 0.0074 0.037 0.440 323 ⇥ 96 1008

Table 2: Valence quark parameters. Set number is as in [3]. The following coe�cients are used

at tree-level c
2

= c
3

= 1. Smearing parameters from [7].
Set Label amval

s amb u
0L c

1

= c
6

c
4

c
5

a
sm

/a

1 VC5 0.0641 3.297 0.8195 1.36 1.22 1.21 2.0, 4.0

3 VCp 0.0628 3.25 0.819467 1.36 1.22 1.21 2.0, 4.0

4 C5 0.0522 2.66 0.834 1.31 1.20 1.16 2.5, 5.0

6 Cp 0.0507 2.62 0.834083 1.31 1.20 1.16 2.0, 4.0

7 F5 0.0364 1.91 0.8525 1.21 1.16 1.12 3.425, 6.85

3 Fitting

Fit functions are schematically, (a and b label smearings)

C2pt

ab (t) =
X

i

Xa,iXb,i exp(�Eit) (5)

and

C3pt

ab (t, T ) =
X

i,j

Xa,iVnn,ijXb,j exp(�Eit) exp(�Ej(T � t)) (6)

where we ignore the fact that we also fit to oscillating exponentials and that the for excited

states we fit to energy di↵erences.

Denoting the Bs interpolating operator with smearing a as �a, the fit amplitudes are related

to matrix elements as follows: from C2pt

ab

Xa,0Xb,0 =

✓
1

2

◆

MILC

h0|�a|BsihBs|�b|0i
2mBsa

3

. (7)

In order to account for the the fact that the MILC code computes the inverse of 2 times the

Dirac operator, the fit amplitudes contain a factor of 1

2

for each strange quark propagator in

the correlation function. From C3pt

ab

Xa,0Vnn,00Xb,0 =

✓
1

4

◆

MILC

h0|�a|BsihB̄s|a6Ocomp|BsihBs|�b|0i
(2mBsa

3)2
. (8)

2



Rough numerics
��s =


0.071(11)

✓
hQ1i

3GeV4

◆
+ 0.035(6)

✓
hQ3i

0.8GeV4

◆
� 0.027(4)

✓
hR2i

�0.3GeV4

◆�
ps�1

Derived from Lenz & Nierste, JHEP 06 (2007), arXiv:hep-ph/0612167

FNAL/MILC arXiv:1602.03560v2: hQ1i @ 6% hQ3i @ 13%

Reducing uncertainty* on hR2i @ 50% ! 25%

* 50% estimate from VSA, to be replaced by 25% LQCD calculation

=) ��s @ 25% ! 18%

[Figures here are rough, e.g. prefactors above may be out of date.]

http://arxiv.org/abs/hep-ph/0612167
http://arxiv.org/abs/1602.03560


To do list

• Double-check everything 

• Extend to fine lattice, physical mass sea quarks 

• Full error analysis



Stay tuned



Error reduction 1999 ➙ 2006
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Figure 3: Uncertainty budget for the theory prediction of ∆Γs. The largest uncertainties stem
from fBs , the renormalisation scale µ1 of the ∆B = 1 operators and the bag parameter of the 1/mb-
suppressed operator R̃2. The transparent segment of the right pie chart shows the improvement
with respect to the old result on the left.

by the dependences on µ1, γ and z. Moreover the 1/mb-corrections play a minor role here
— as can be read off from the error due to the variation of mpow

b .

3.4 ∆Md, ∆Γd and ad
fs within the SM

Here we give updated numbers for the mixing parameters of the Bd system. The CKM
elements governing Bd−Bd mixing appear in the combinations λd

i = V ∗
idVib for i = u, c, t.

The bag parameters multiplying fBd below refer to Bd mesons and are different from those
in the Bs system. However, no non-perturbative computation has shown any numerically
relevant deviation of BBd/BBs from 1.

Updating ∆Md to mt(mt) = 163.8 ± 2.0 GeV gives

∆Md = (0.53 ± 0.02) ps−1

(
|Vtd|

0.0082

)2 ( fBd

200 MeV

)2 B

0.85
.

While in the Bs system the values of γ and |Vub| in eq. (3.6) play a minor role, their
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