Infrared properties of a prototype pNGB model for beyond-SM physics Anna Hasenfratz^{1*}, Claudio Rebbi², Oliver Witzel³ University of Colorado Boulder, ²Boston University, ³University of Edinburgh presenter in part based on PRD93, 114514 (2016) with Richard Brower, Evan Weinberg Lattice 2016 34th International Symposium on Lattice Field Theory, 24-30 July 2016

Infrared properties of a prototype dilaton-like or pNGB Higgs model for beyond-SM physics Anna Hasenfratz^{1*}, Claudio Rebbi², Oliver Witzel³ University of Colorado Boulder, ²Boston University, ³University of Edinburgh, presenter in part based on PRD93, 114514 (2016) with Richard Brower, Evan Weinberg Lattice 2016 34th International Symposium on Lattice Field Theory, 24-30 July 2016

Most strongly coupled BSM models are effective models, describing part of the dynamics. The goal is to

start with Higgsless, massless SM \rightarrow Full SM

$$\mathcal{L}_{SM0} \longrightarrow \mathcal{L}_{SM}$$

Most strongly coupled BSM models are effective models, describing (some) part of the dynamics:

New strong dynamics coupled to SM can do it:

$$\mathcal{L}_{SD} + \mathcal{L}_{SM0} + \mathcal{L}_{int} \longrightarrow \mathcal{L}_{SM} + \dots$$

$$\uparrow$$
Full SM + additional states from \mathcal{L}_{SD}

Most strongly coupled BSM models are effective models, describing (some) part of the dynamics:

New strong dynamics coupled to SM can do it:

The construction has to

- give mass to the SM gauge fields
- give mass to the SM fermions :

mass to the SM fermions : 4-fermion interaction or partial compositness $\int_{-\infty}^{-\infty} \mathcal{L}_{SD1} + \mathcal{L}_{SD2} + \dots$

- give mass to \mathcal{L}_{sp} fermions and generate 4-fermion interactions: \mathcal{L}_{W} sector

Most strongly coupled BSM models are effective models, describing (some) part of the dynamics:

New strong dynamics coupled to SM can do it:

 $\begin{array}{cccc} \mathcal{L}_{UV} & \rightarrow & \mathcal{L}_{SD} + \mathcal{L}_{SM0} + \mathcal{L}_{int} & \rightarrow & \mathcal{L}_{SM} + \dots \\ \uparrow & & \uparrow & & \uparrow \end{array}$ Full SM + additional This could come from states from \mathcal{L}_{SD} a UV complete theory

The construction has to

- give mass to the SM gauge fields
- give mass to the SM fermions :

mass to the SM fermions : 4-fermion interaction or partial compositness $\int_{-\infty}^{\infty} \mathcal{L}_{SD1} + \mathcal{L}_{SD2} + \dots$ mass to $\int_{-\infty}^{\infty} fermions and concrete 4 for$

- give mass to \mathcal{L}_{SD} fermions and generate 4-fermion interactions: \mathcal{L}_{W} sector

What is \mathcal{L}_{SD} ? The most promising candidates for \mathcal{L}_{SD} are chirally broken in the IR but conformal in the UV: (Luti&Okui(hep-lat/00409274), Dietrich&Sannino(hep-ph/ 0611341), Vecchi(1506.00623), Ferretti(1312.5330, talk at Edinburgh, June 2016),..... Conformal chirally broken UV $\overline{\Lambda_{UV}}$ Fermion masses Λ_{IR} Higgs dynamics

What is \mathcal{L}_{SD} ?

The most promising candidates for \mathcal{L}_{SD} are chirally broken in the IR but conformal in the UV: (Luti&Okui(hep-lat/00409274), Dietrich&Sannino(hep-ph/0611341), Vecchi(1506.00623), Ferretti(1312.5330, talk at Edinburgh, June 2016),....

	conformal			chirally broken
UV	$\Lambda_{_{UV}}$	Fermion masses	$\Lambda_{I\!R}$	Higgs dynamics
				Many possibilities: - SU(3) gauge with 4 flavors - SU(4) with 2 different representation - etc.
				Ma, Cacciapaglia,JHEP1603,211 Vecchi, 1506.00623 Ferretti et al,JHEP1403,077

What is \mathcal{L}_{SD} ?

The most promising candidates for \mathcal{L}_{SD} are chirally broken in the IR but conformal in the UV: (Luti&Okui(hep-lat/00409274), Dietrich&Sannino(hep-ph/0611341), Vecchi(1506.00623), Ferretti(1312.5330, talk at Edinburgh, June 2016),....

conformal

chirally broken

UV

7	oomornar	、 IR		
	$\Lambda_{_{UV}}$ Fermion masses $\Lambda_{_{I\!R}}$	Higgs dynamics		
	Add enough fermions to drive the system into the conformal window; If the fermions are massive [*] , they will decouple at Λ_m	Many possibilities: - SU(3) gauge with 4 flavors - SU(4) with 2 different representation - etc.		
	y i <i>I</i> X	Ma, Cacciapaglia,JHEP1603,211 Vecchi, 1506.00623 Ferretti et al.JHEP1403.077		

 * What gives mass to the additional fermions? That is dynamics beyond $\,\Lambda_{_{UV}}$.

Lattice realization: 4+8 mass-split model

R. Brower, A. H, C. Rebbi, E. Weinberg, O. Witzel, PRD93, 114514 (2016)

UV	conformal	chirally broken
	$\Lambda_{_{UV}}$ Fermion masses $\Lambda_{_{I\!R}}$	Higgs dynamics > IR
	Add 8 "heavy" fundamental flavors: N _f = 4+8 = 12 : → conformal dynamics	SU(3) gauge with 4 light fundamental flavors: pNGB or prototype dilaton-Higgs
-1		Ma, Cacciapaglia,JHEP1603,211 Vecchi, 1506.00623

The construction

- ensures chiral symmetry breaking in the IR
- "walking" is arbitrarily tunable by mh
- anomalous dimensions are that of the conformal IRFP

This system is a prototype - many similar models are possible

Predictivity and tunable walking

Phase diagram of N_h = 8 "heavy" and N_ℓ = 4 light or massless flavors

Parameters: g^2 , m_h , m_ℓ

Predictivity and tunable walking

Phase diagram of N_h = 8 "heavy" and N_ℓ = 4 light or massless flavors

Parameters: g^2 , m_h , m_ℓ

Predictivity and tunable walking

Phase diagram of N_h = 8 "heavy" and N_ℓ = 4 light or massless flavors

Predictivity and tunable walking

Phase diagram of N_h = 8 "heavy" and N_ℓ = 4 light or massless flavors

Questions for lattice study:

- What is the spectrum light and heavy?
- What is the effect of the 8 heavy flavors on the light spectrum?
- Is the heavy spectrum present in the IR dynamics?
- How does the coupling run/walk?
- What is the anomalous dimension at the IRFP: $\psi\psi\psi$ and $\ \overline{\psi}\psi$.

This talk: hyperscaling relations that governs the spectrum and a few illustrative examples Next talk by Claudio Rebbi : many more details! Questions for lattice study:

- What is the spectrum light and heavy?
- What is the effect of the 8 heavy flavors on the light spectrum?
- Is the heavy spectrum present in the IR dynamics?
- How does the coupling run/walk?
- What is the anomalous dimension at the IRFP: $\psi\psi\psi$ and $\bar{\psi}\psi$

This talk: hyperscaling relations that governs the spectrum and a few illustrative examples Next talk by Claudio Rebbi : many more details!

In conformal systems Wilson RG considerations predict the mass dependence of all dimensional quantities (hyperscaling)

If the scale changes as $\mu \rightarrow \mu' = \mu/b$, b > 1the couplings run as

> $\hat{m}(\mu) \rightarrow \hat{m}(\mu') = b^{y_m} \hat{m}(\mu)$ (increases) $g \rightarrow g^*$

Any 2-point correlation function at large b scales as

 $C_{H}(t;g_{i},\hat{m}_{i},\mu) \rightarrow b^{-2y_{H}}C_{H}(t/b;g^{\star},b^{y_{m}}\hat{m}_{h},b^{y_{m}}\hat{m}_{\ell},\mu)$

$$\equiv b^{-2y_H} C_H(t/b;g^*,b^{y_m}\hat{m}_h,\hat{m}_\ell/\hat{m}_h,\mu)$$

since

$$C_H(t) \propto e^{-M_H t} \longrightarrow aM_H \propto (\hat{m}_h)^{1/y_m} F_H(m_\ell/m_h)$$

where $F_H(m_{\ell}/m_h)$ is a universal function

In conformal systems Wilson RG considerations predict the mass dependence of all dimensional quantities (hyperscaling)

If the scale changes as $\mu \rightarrow \mu' = \mu/b$, b > 1the couplings run as

 $\hat{m}(\mu) \rightarrow \hat{m}(\mu') = b^{y_m} \hat{m}(\mu)$ (increases) $g \rightarrow g^*$

Any 2-point correlation function at large b scales as

 $C_H(t;g_i,\hat{m}_i,\mu) \rightarrow b^{-2y_H}C_H(t/b;g^*,b^{y_m}\hat{m}_h,b^{y_m}\hat{m}_\ell,\mu)$

$$= b^{-2y_H} C_H(t/b; g^*, b^{y_m} \hat{m}_h, \hat{m}_\ell / \hat{m}_h, \mu)$$

since
$$C_H(t) \propto e^{-M_H t} \longrightarrow aM_H \propto (\hat{m}_h)^{1/y_m} F_H(m_\ell / m_h)$$

where $F_H(m_{\ell}/m_h)$ is a universal function

In conformal systems Wilson RG considerations predict the mass dependence of all dimensional quantities (hyperscaling)

If the scale changes as $\mu \rightarrow \mu' = \mu/b$, b > 1the couplings run as

> $\hat{m}(\mu) \rightarrow \hat{m}(\mu') = b^{y_m} \hat{m}(\mu)$ (increases) $g \rightarrow g^*$

Any 2-point correlation function at large b scales as

 $C_H(t;g_i,\hat{m}_i,\mu) \rightarrow b^{-2y_H}C_H(t/b;g^*,b^{y_m}\hat{m}_h,b^{y_m}\hat{m}_\ell,\mu)$

$$= b^{-2y_H} C_H(t/b;g^*, b^{y_m} \hat{m}_h, \hat{m}_\ell/\hat{m}_h, \mu)$$

$$C_H(t) \propto e^{-M_H t} \longrightarrow aM_H \propto (\hat{m}_h)^{1/y_m} F_H(m_\ell/m_h)$$

since

where $F_H(m_{\ell}/m_h)$ is a universal function

Masses scale as

 $aM_H \propto (\hat{m}_h)^{1/y_m} F_H(m_\ell / m_h)$

Ratios are universal functions of m_{ℓ}/m_h

$$M_{H_{1}} / M_{H_{2}} = \Phi_{H} (m_{\ell} / m_{h}),$$
$$M_{H_{1}} / F_{\pi} = \tilde{\Phi}_{H} (m_{\ell} / m_{h})$$

In the m_{ℓ} =0 chiral limit dimensionless ratios are independent of m_h If F_{π} is known, the rest of the spectrum is predicted - no more free parameters

- True for light, heavy and mixed spectrum
- This is very different from QCD!

Corrections to scaling

The gauge coupling in N_f=12 runs slow $g \rightarrow g^{\star}$ is not a (very) good approximation, corrections are needed Cheng, A.H.,Y. Liu,Petropoulos, Schaich,PRD90 (2014) 014509

Ratios scale as

$$M_{H_1} / F_{\pi} = \tilde{\Phi}_H (m_{\ell} / m_h) (1 + c_0 m_h^{\omega})$$

 c_0 depends on g^2 and the observable, ω is universal : both can be determined from N_f=12 studies

Our "prototype" model: SU(3) gauge with 4 + 8 fundamental fermions $N_h=8$ "heavy" and $N_\ell=4$ "light" flavors

Numerical studies: β =4.0, am_h=0.050,0.060,0.080,0.100, am_l=0.003-0.035

Scaling violations are mostly from F_{π}

Our "prototype" model: SU(3) gauge with 4 + 8 fundamental fermions $N_h=8$ "heavy" and $N_\ell=4$ "light" flavors

Numerical studies: β =4.0, am_h=0.050,0.060,0.080,0.100, am_l=0.003-0.035

Our "prototype" model: SU(3) gauge with 4 + 8 fundamental fermions $N_h=8$ "heavy" and $N_\ell=4$ "light" flavors Numerical studies: $\beta=4.0$, $am_h=0.050, 0.060, 0.080, 0.100$, $am_\ell=0.003-0.035$

meson $am_h = 0.050 \ \nabla M_o^{hh}/F_{\pi}$ Scaling violations are mostly from F_{π} 32 $am_h = 0.060 \ \Delta M_o/F_{\pi}$ $am_{h} = 0.080$ 28 $am_{h} = 0.100$ Heavy-heavy vector is ~2.6 times the 24 light-light and independent on m_h 20 Very different from QCD ^μ ⊥[∂] ∐ 12 8 N_f=12 flavor limit light 4 preliminary 0 112f 0.8 0.2 0.4 0.6 0 m_{ℓ}/m_{h} avg

Our "prototype" model: SU(3) gauge with 4 + 8 fundamental fermions $N_h=8$ "heavy" and $N_\ell=4$ "light" flavors

Numerical studies: β =4.0, am_h=0.050,0.060,0.080,0.100, am_l=0.003-0.035

Hyperscaling at work - vs nucleon mass

precise values could be strongly model dependent

Summary

Mass-split system is phenomenologically well motivated effective model

- Chiral symmetry is broken in the IR
- Conformal behavior in the UV ensures otherwise elusive properties
- Different IR and UV systems are easy to combine

Hyperscaling at the conformal IRFP makes the model very predictive:

- The spectrum depends only on $m_\ell\,/\,m_h$
- It is independent of g^2 and m_h in the $m_\ell = 0$ limit

In the $m_{\ell} = 0$ chiral limit

- The light spectrum is 4 8 times F_{π}
- The heavy spectrum is only 2 3 times above the light one, could be within reach of experiments

Our model is prototype for both pNGB and dilaton-Higgs scenario where the scale is set by F_{π} =SM vev or F_{π} = (SM vev) / sin(χ) Next talk (Claudio Rebbi) : many more details

Backup slides

The fate of 12 flavors:

There are over dozen studies of N_f =12:

- They are all consistent with conformal behavior:
 - Finite size scaling
 - Eigenmode spectrum, chiral condensate
 - Finite T phase diagram, etc
- Many predict consistent anomalous dimension ~0.25
- Cheng et al in 1404.0984 illustrated the t-shift improvement with N_f =12 and found g^{*2} = 6.18(20) (statistical errors only)
- Fodor et al in 1607.06121 exclude an IRFP in the narrow (5.98 6.38) range. Investigations over a larger range of couplings and studies of systematic effects, e.g. in extrapolations, are warranted.
- A robust calculation covering $g^{*2} \sim 8-9$ is needed to either
 - identify an IRFP with good accuracy
 - find evidence of spontaneous chiral symmetry breaking