dark matter from one-flavor SU(2) gauge theory

Anthony Francis Renwick J. Hudspith Randy Lewis Sean Tulin

York University (Toronto)

Thanks to Claudio Pica (Odense) for help in the initial stages.

outline

- motivation
- the basic theory
- preliminary lattice explorations
- coupling to the standard model

motivation

- a minimal non-Abelian dark sector
- dark matter stability exists naturally

SU(2) with one Dirac flavor

$$\begin{split} \mathcal{L} &= -\frac{1}{4} F^a_{\mu\nu} F^{a\,\mu\nu} + i \bar{Q} \gamma^\mu D_\mu Q + m Q^T C E Q \\ &\text{where} \quad Q = \left(\begin{array}{c} \chi_L \\ C \bar{\chi}_R^T \end{array} \right), \quad E = \left(\begin{array}{c} 0 & 1 \\ -1 & 0 \end{array} \right) \\ &Q \text{ has no standard model quantum numbers.} \end{split}$$

 \mathcal{L} has an unbroken global SU(2), $Q \to e^{i\sum_{i=1}^{3} T_i \alpha_i} Q$, which is the generalization of baryon number.

For m=0, \mathcal{L} has an unbroken (but anomalous) global U(1), $Q \to e^{i\beta}Q$, like the axial U(1) in QCD. We expect the U(1) to be broken dynamically by a mass-like vev.

For $N_f > 1$, the global SU(2) would be SU(2 N_f).

the particle spectrum

The theory will have mesons, baryons and glueballs.

Simple operators for mesons: $\bar{Q}\Gamma Q$

Simple operators for baryons: $Q^TC\Gamma EQ$

Recall
$$E = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

The spectrum forms multiplets of the global SU(2).

Examples:

 $\bar{Q}\gamma_5 Q$ is a singlet. Let's name it η .

 $\bar{Q}\gamma_{\mu}Q$ and baryon and antibaryon form a triplet $\rho^{\pm,0}$.

lattice ensembles

plaquette gauge action Wilson fermion action

HiRep code [Del Debbio, Patella, Pica, PRD81, 094503 (2010)]

β	2.2	2.309
lattice dimensions	$20^{3} \times 56$	$28^3 \times 56$
number of configurations	2000	1540
acceptance	73%	74%
unitary $m_{\sf bare}$	-0.865	-0.76
partially quenched m_{bare}	-0.845, -0.855	-0.74, -0.75
average plaquette	0.5989	0.6255
aw_0	1.430(5)	1.956(7)
$m_V L$	9.0(2)	8.8(2)

preliminary lattice spectrum

linear extrapolations

pseudoscalar correlators

W=wall (Coulomb gauge fixed), L=local

vector correlators

W=wall (Coulomb gauge fixed), L=local

a large N_c limit

For $N_c>2$, one-flavor $\mathrm{SU}(N_c)$ does *not* have the global $\mathrm{SU}(2)$.

But recall SU(2) = Sp(2).

The global SU(2) is present for $Sp(N_c)$. (N_c is even.)

In Sp(N_c), the η becomes massless as $N_c \to \infty$ and $m_Q \to 0$. In this double limit, the global U(1) is only broken dynamically and the η is its Goldstone boson.

particle spectrum for $N_c{ ightarrow}\infty$

How can the global SU(2) remain unbroken?

Mesons have this fermion content: $M = \sum_{i=1}^{N_c} \bar{Q}_i Q_i$ Baryons: ??? $X = \sum_{i,j,\dots,k=1}^{N_c} Q_i Q_j \dots Q_k$??? No.

$$\mathsf{Sp}(N_c)$$
 baryons are $B = \sum_{i=1}^{N_c} \sum_{j=1}^{N_c} Q_i E_{ij} Q_j$

X operators reduce to a collection of B operators.

Thus the global SU(2) remains unbroken. Baryons B and mesons M remain degenerate.

Higgs couplings to the dark sector

Can dim=5 BSM physics destabilize dark matter? No.

 $\begin{array}{ll} \dim {\bf 5}: & \delta \mathcal{L} \sim \bar{Q} \gamma_5 Q H^\dagger H & \text{(couples to } \eta) \\ \dim {\bf 6}: & \delta \mathcal{L} \sim \bar{Q} \gamma^\mu Q H^\dagger \nabla_u H & \text{(couples to } \rho) \end{array}$

Dark matter, ρ , is stable at dimension 5.

This feature is specific to the one-flavor theory.

Like SM proton decay, ρ decay is dimension 6. Thus ρ can be stable for the life of the universe.

fermion mass with parity violation

The dark fermion gets mass from 2 sources: BSM (dimension 4) and the SM Higgs (dimension 5):

$$\begin{split} \delta \mathcal{L} &= -m_4 \cos \theta_4 \bar{Q} Q - m_4 \sin \theta_4 \bar{Q} i \gamma_5 Q \\ &- \frac{v^2}{\Lambda} \cos \theta_5 \bar{Q} Q \left(1 + \frac{h}{v} \right)^2 - \frac{v^2}{\Lambda} \sin \theta_5 \bar{Q} i \gamma_5 Q \left(1 + \frac{h}{v} \right)^2 \end{split}$$

 $\Lambda=$ BSM scale. v=246 GeV. Parity violation allowed.

Mass terms: $\delta \mathcal{L} = m \bar{Q}_{\rm tw} Q_{\rm tw}$ where $Q_{\rm tw} \equiv e^{i \gamma_5 \alpha/2} Q$.

Vector and axial hadrons are invariant under $Q o Q_{\mathrm{tw}}$.

invisible Higgs decays for SU(2)

The experimental bound $\Gamma(h \to Q\bar{Q}) < 1.2$ MeV gives

decays from the dark sector

The only dark \rightarrow SM decays are through Higgs bosons. If $\theta_5 \neq 0$, then η can decay through a single Higgs.

Recall: ρ is essentially stable due to the global SU(2).

Example:

BBN \Rightarrow lifetime of η < 1 second.

Use $\langle 0|\bar{Q}\gamma_5Q|\eta\rangle$ from lattice to bound $\frac{\sin\theta_5}{\Lambda}$.

For $m_n \ll m_H$,

$$\Gamma_{\eta} = \left| \langle 0 | \bar{Q} \gamma_5 Q | \eta \rangle \right|^2 rac{m_{\eta} \sin^2 \theta_5}{2\pi \Lambda^2 m_H^4} \sum_{f \in \mathsf{SM}} m_f^2 \left(1 - rac{4 m_f^2}{m_{\eta}^2} \right)^{3/2}$$

amplitude useful for η decay

also in progress

1. direct detection: ρ scattering from a SM nucleon.

2. relic density:

Options for $m_n < m_\rho$ include $\bullet \rho \rho \to \eta \eta$

asymmetric dark matter

Options for $m_{\eta} > m_{\rho}$ include $\bullet \ \rho \rho \rho \to \rho \rho$

Future lattice simulations will reveal $m_{\eta}-m_{\rho}$ ordering. Disconnected diagrams are required.

For disconnected calculations in the 2-flavour theory, see Arthur, Drach, Hietanen, Pica, Sannino, 1607.06654 and Drach, Monday 14:15

summary

1-flavor SU(2) is a minimal non-Abelian dark sector.

It has a global SU(2) to stabilize dark matter.

It has no dark matter decay at dimension 5.

1 Goldstone boson should emerge for $\operatorname{Sp}(N_c \to \infty)$.

SU(2)=Sp(2) lattice explorations are in progress.