Abstract

New particles can reveal their existence indirect-

ly through tiny discrepancies in the properties of

known particles from that expected in the Standard
Model. The magnetic moment of the muon shows
such a discrepancy, a tantalising 25 parts in 1019,
but with 3o significance. The magnetic moment, L,
1s given 1n terms of the spin, S, by:
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The difference of g from the naive value of 2 1s
called the ‘anomalous magnetic moment’, a,, .

The anomalous magnetic moment 1s determined di-
rectly by measuring the spin precession as polarised
muons circulate 1n a ring with a perpendicular mag-
netic field. Experiment E989 at Fermilab will start
data-taking 1n 2017 and aims to reduce the experi-
mental uncertainty by a factor of 4.

An 1mmproved theoretical uncertainty from the Stan-
dard Model 1s needed to match this. The largest un-
certainty comes from the diagram containing a
quark loop (see Fig. below): the Leading Order
Hadronic Vacuum Polarisation (HVP) contribution.

Lattice Calculation

We use MILC gluon configurations that include u,
d, s and ¢ HISQ sea quarks at 3 lattice spacing val-
ues (0.15, 0.12 and 0.09 fm), 3 u/d quark masses
going down to the physical u/d quark mass and 3
volumes (for one parameter set). This allows us to
do the most realistic calculations to date [1].

On these configurations we generate u/d HISQ
propagators and combine them to give the correla-
tion function between two local vector currents
(normalised nonperturbatively), separated by a time
interval, t. Taking t-moments of the correlation
function allows us to reconstruct the renormalised
vacuum polarisation function [2] and determine, by
integrating over k2, its contribution to a, [3].

For the u/d case we reduce statistical errors by us-
ing fitting local and smeared correlators and using
fitted local results at large t, rather than the data.
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The p pole dominates the calculation, giving ~80%
of the result. p properties obtained from our corre-
lators at large t can be compared to experiment (see
Fig. top right). At smaller t, and in the t-moments,
additional states contribute, including nw. The nn
contribution 1s sensitive to the volume and the =«
mass. A specific staggered quark 1ssue 1s that differ-
ent tastes of m meson have masses that differ at
O(0sa?). The leading i terms are readily calculated
in scalar QED.

Corrections to this can

be estimated by cou-

pling 1n an explicit p

field. Parameters muy, -

er, My, Tp, forn are well-

known. Our correction 1s 7.0(7)% at physical u/d
masses.

Sensitivity to the u/d quark mass 1s almost eliminat-
ed by rescaling the moments (with mr removed) by
appropriate powers of the experimental p mass [4].
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The plot above shows corrected and raw data as a
function of u/d quark mass. Note how the corrected
data have reduced volume, muq and a-dependence.
A smmple fit (with distribution below) gives value
598(6)(8) x10-1Y where 8 is the systematic uncer-
tainty from missing QED and 1sospin effects.
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The total HVP,LO result [1,2,5] 1s then

u/d
LHVP,LO

I conn

x 1010 =

a, "0 =666(6)(12) x 1071

including a 1.5% systematic uncertainty for quark-line

no new physics
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disconnected diagrams [6]. We compare lattice results
to determinations that use the experimental cross-sec-
tion for e+e- to hadrons above. The green point shows
the value expected 1f there were no new physics (1.e.
experiment - [sum of SM values for QED, EW,
HVP HO and HIbl pieces]).

Conclusions

Lattice QCD calculations of the HVP contribution to
a, are making fast progress. Our result 1s the accurate
to date and shows a 36 discrepancy with experiment.
Ongoing work with MILC will improve statistics, use
finer lattices, add QED and 1sospin effects and 1m-
prove analysis of disconnected contributions.
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