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Introduction

B |n many interesting physical system, the fermion determinant becomes complex.
And its phase plays an important role in the determination of the vacuum.

speculations
* QCD at low temperature and high density exotic fermion condensates

« superstring theory (type 1B matrix model) SSB of SO(10) down to SO(4)

B If one applies the complex Langevin method (CLM), [Parisi '83] [Klauder '83]

the fermion determinant may cause the singular drift problem,
which is associated with the appearance of small eigenvalues of Dirac op..

[—> wrong results



L
Our strategy

B \We propose to avoid this problem
by introducing a fermion bilinear term in the action and modify the Dirac op.

S — St —|—A5f (M)
D — D’ (M) This modification deforms the eigenvalue distribution.

B After that, we get the results for the original system
by extrapolating the parameter M to zero using reliable data only.

___________ paonl

new criterion (arXiv:1606.07627)

B We test this idea in a simple matrix model with rotational SO(4) symmetry.
O The phase of the fermion determinant induces the SSB of SO(4) down to SO(2).

cf) phase quenched model —— no SSB

The obtained results agree well with
the predictions obtained by the Gaussian expansion method.
[Nishimura-Okubo-Sugino '05]
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The SO(4)-symmetric matrix model

o _ [Nishimura ‘02]
B Partition function

7 = /dX (det D)N e n

XM - N x N Hermitian matrices

O boson action , u=1~4
1 2
Sb — §N Z tr (Xu) FM: 2 x 2 gamma matrices
p=1
O fermion deteiminant —— i0; fory=1=1,2,3
D:ZFM@)XM loxo forpu=4

p=1 This is exactly “massless” system

B det D is complex
B SO(4) rotational symmetry

B The fermion determinant induces the SSB of SO(4)

suggested by the Gaussian expansion method
[Nishimura-Okubo-Sugino '05]
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Order parameters for the SSB of SO(4)

B |n order to see the SSB

1. introduce a external field in the action to break SO(4) sym.

4
N
Sb N Sb _ Sb N em. tr X2 Here we chose
e 2 ; utr (X5) m, = (1,2,4,8)
2. N - o

3. extrapolate € to zero.

B define the order parameters

A =Tm ), e (), = (o (X))

e—0

B In the Gaussian expansion method,

SO(2) case : (A1) = (A2) = 2.1, (A3) = 1.0, (A1) = 0.8 | comparing the free energy

J

SO(3) case : (A1) = (A2) = (A3) ~ L.75, (Ag) ~ 0.75 SO(2)-sym. vacuum is favored.
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The application of the CLM to the model

B action

S = Sb_|_€ — N ln (det D)

B complex Langevin equation

dXM 08 N (t) n,(6) : N x N Hermitian matrices
= — 77”
dt aX;_z X, N X N Hermitian matrices
— N X N complex matrices
W drift term
a8

X, N (1+em,) X, — Ntr, (%‘T“)

zero-eigenvalues of D correspond to a pole.

B The eigenvalues of D close to zero cause the singular-drift problem.

» P(X,t) needs to damp rapidly around the pole
in order to justify the CLM.



L
The singular-drift problem

B The eigenvalue distribution of the Dirac op.

e =0.5 e =0.3

Im
AW N =~ O =~ N W b
|
i
Im
B W N = O a2 N W AN
Im
AN A o2 N w A
1

B Below some critical €, the CLM does not work due to the singular-drift problem.

B \We try to solve this problem by introducing a fermion bilinear term in the action.



Introduction of a fermion bilinear term
e =0.2, me = 0

W introduce a fermion bilinear term AS¢ in the action S e
_ L[N=48 " & ]
AS; = —NM,tr (Y1) N
[ SR @ F— i
D — D =TH# X (Xu +Mu1) M,, : parameter ; .
here We used . f . 1 2 3 :2 i 1 1 1 I | 1 1 ]
105 or u=1=1,2, 3 2 -
MM:(OaOaOamf) ' = H 4321R(l1234
loyo for p=4

B The eigenvalue distribution shifts to the real direction.

— The CLM becomes valid even at small €.

B This breaks the SO(4) symmetry minimally down to SO(3). ]

O First we investigate the SSB of this SO(3).

A OV A 0 a N w s~ o

1 1
4 32101 2 3 4
Re



Validity of the CLM

B From the histogram of the magnitude of the drift,

the validity of the CLM can be judged. —— Shimasaki’s talk, Nagata’s talk

[Nagata-Nishimura-Shimasaki '16]
n : the magnitude of the drift term

1 D) mf = 1.0
1 . (85) 0.001 ¢ ; ; ; ; 7
=ty (2 |
o e=02 —
4 p=1 8X“ ij 0.0001 | \ £=0.3 -~ -
\ / =04 --——--
@ (n) : probability distribution of 16-005 \ .
the magnitude n N |
S 1e006 F | =
O new criterion expo n e\‘\ntial
@(n) should damp faster than exponential. ~ 1e907 ¢ \ 1
1e-008 ]
B ¢(n) for e = 0.2 damps exponentially ! o
(but not for e < 0.1). 1e-003

30000 40000 50000 60000 70000 80000 90000 10000

n

I:> This enables us to extrapolate € using correct data only.
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L
EXtrapOIaUOn tO E - O Y.l.-Nishimura, work in progress

B order parameters for finite my

<)‘i>mf = lim (\;) the order parameter for my = 1.0

€ €,myg
Y 3 . , . . — (M)
[ ) 25 i B BT i
(M), = 1.74(2) e
SO(2) 2r e (A2) e im,g
(A2),m, = 1.731(8) z ./.ég.é.@..-.@-.-.gP-._.e.-.-e.-.-a.-.e-.-.e-.-.@ .......... e
A~ 15 FRa, i .
Qb =14220) | F T e Oabe
:“\..\_.V\“v\- | A A A o
Ay = 1112) e S o,
I Voo ge—m_m _\M €,1f
| the region of validity T
0 ] | ] ] ]
G 0 0.1 0.2 0.3 0.4 0.5 0.6

SSB € (parameter of

SO(S) —> SO(Z) the symmetry breaking term)
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EXtrapOIatlon tO mf — O Y.l.-Nishimura, work in progress

2.5 T T I I
B order parameters \
. 2 ':'.:.‘_'7;7-_-_.___,____@ B <)\1>mf_
) = Jim, (A R ..
E.._ 15 B I AP T
= 1978 7 B R
1) = 1. Vv S .
1 B . ‘_’_@,,‘/-@'" A —
(A,) = 2.04(5) }SO(Z) e (A
(13) = 1.08(8) 0.5 .
(A4) = 0.71(3)
\. Y 0 | L L l I
0 0.2 0.4 0.6 0.8 1 1.2

@ my

previous results (Gaussian expansion method)

SSB from SO(4) to SO(2) (A1) = (Az) >~ 2.1
(A3) ~ 1.0 (N\y) =08
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Summary

B For the success of the CLM in the present case,
it was crucial to overcome the singular-drift problem.

B QOur strategy:
we deformed the Dirac op. while maintaining the qualitative feature
of vacuum as much as possible.
Then, we extrapolated the deformation parameter to zero.

B In the SO(4)-sym. matrix model,
we had to introduce infinitesimal symmetry breaking terms to probe the SSB.

* By using the criterion to justify the method, we can extrapolate the parameter
using reliable data only.
——> The results agree with the prediction obtained by the GEM.

B This strategy would be useful in finite density QCD at low temperature
and high density.

« Since various exotic fermion condensates are expected there,
deforming the Dirac op. with the corresponding bilinear term
would not disturb the vacuum significantly.






Future Works

B Application to the IKKT matrix model which has the SO(10) symmetry.

« The non-perturbative formulation of superstring theory.
» |tis expected that 4d space emerges from compact 10d space.

It is suggested that the SO(10) breaks down to SO(3)
by the Gaussian expansion method.

It is based on the systematic calculation, and using approximations.
[Nishimura, Okubo, Sugino '05]

We need to study this from first-principle calculation using the CLM.

B The finite density QCD

In the high density low temperature phase, introducing an external source
as we did here may help reduce the singular-drift problem.



L
Introduction

B Complex action problem /J = /da: e 5@ S(x)eC

- e S is no longer regarded as the Boltzmann weight factor.

« It appears in finite density QCD, SYM theory, real time dynamics etc.

B The complex Langevin method

« certain problems often appear in the CLM, which leads to wrong results.

 The CLM works successfully in finite density QCD and Random matrix theory.
at deconfined phase T > T, with quark mass
[Seiler, Sexty, Stamatescu '12][Sexty ’13] [Mollgaard, Splittorff ’14]
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The complex Langevin method e sawsers:

For the partition function with a complex action

Z = /da: e 5@ S(x) € C

B complexify x and consider holomorphic extension of S

rT—z2=T+1y S(x)—)S(x’y)

B the complex Langevin equation

___________________________________________

ix _ —Re@ZS (Z) + 7 (t) t: the. Lanqevin time ' n(t))=0 i
‘g eal  MMENOSE yp@) = 20— 1) |
V= —Ima, S (z)

B The probability distribution satisfies the Fokker-Planck like equation

OpP (z,y;t) = O (Ox + Re[0:5]) P (z,y;t) + 9yIm |0.5]| P (z,y; 1)



L
Criteria for the CLM to be justified

For holomorphic observables 0(x+iy),
the expectation values is given in the CLM as

(O (x+1y)) = /dacdy P.q(z,y) O (z + iy)
B The crucial point is that there exists a real and non-negative weight P(x,y) such that

/dﬂ)p(.’lﬁ')O(fL’):fdxdypeq(xay)O(x+2y)

~e~S(X): complex

_ in the imaginary direction. ——> gauge cooling
P.4(x,y) needs to damp rapidly _ N _
around singularities of the drift term.

[Aarts, James, Seiler, Stamateseu '11] [Nishimura, Shimasaki ’15]

* In particular, fermion determinant will cause the singular-drift problem.

E> We propose a new technique to resolve this problem in such a case.



Equivalence to the path integral

B \We assume
P (,t) = ¥ (2,t) e~

Then, the FP eq. becomes

Ew(x,t)Z—QHw(I,t) o\ 9r 20z or 20x

. self-adjoint op.

mode expansion N
H?’bn (LE) — Enqxbn (CC) Zp (SU, t) - Z an'l/)n (l?) €_E“t

Thus, we obtain

lim P (x,t) = age”® up to normalization
t—o0

B The expectation value
lim (O (:1:(”) (t))) = lim [ dzO(z)P(a;t) = (0 (x)),

t—o00 n t—00
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Proof of the relation

/dxp(a:;t)O(a:) :/dxdyP(a:,y;t)O(a:-l-iy)

B att = 0, we can choose
P (x,y;0)=p(x;0)6(y) ——— The relation holds.

B for an arbitrary t, we need to show the below relations

[0 @ pGast) = [dr0 @0 p(:0

/dazdyO(x—l—iy)P(m,y;t) — /dazdyO(x—l—iy;t)P(a:,y;O)

B the time-dependent observable is defined by

0 - 4 : )
aO (z;t) = LO (z;1) Peq(x,y) damps rapidly

~ 9  9s\ o in the imaginary direction.

L= (az a 82’) 0z around singularities of the drift term.

\. J




B consider time interpolating function

F(t,T)—/dmdy0($+’iy;T)P($aQEt_T)

B We show that F(t, t) is independent of t

EF(t,T)Z /d:z:dyaO(:E+iy;T)P(w,y;t—T)+/dwdyO(:ﬂ-i—iy;’r) ‘%P(:{:,y;t—v-)

or or
l FP eq.

=/dwdyf10(a:—l—z'y;T)P(:I:,y;t—T)—fdmdy0($+iy;T)LTP($,y;t—T),

i partial derivative

=/dmdyf}O(m—l—z’y;T)P(a:,y;t—7-)—fdmdyLO(:E—I—iy;'r)P(m,y;t—’r),

l LO (z) = LO (z) for a holomorphic function

=0



introduction of a fermion mass term in the 3 direction

Introducing a mass term to fermions
4

p=1
Here, we used
a, = (0,0,m¢,0)

This term makes the eigenvalue distribution of D to avoid the pole.

—> we can extrapolate the values of (4;) using much smaller €.

fore = 0.1 mg =0

I+H’I

S

Im
A O N IS o a N s
T 1 1 T T 1T
Im
AdDN Ao anow
T T T T 1 1

TR A T T .
4 3241012 3 4 4 -3-2-1012 3 4
Re Re



Improvement by means of fermion mass terms

(4;)

1. taking the € — 0 limit with m, fixed.

2. taking the my — 0 limit.

2.5

1.5

0.5

y previous result ~N

(11) = 2.15(6) }
SO(2)
(1) = 2.15(7)

(A3) = 0.99(4)
(1) = 0.654(9)
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B The result clearly shows the SSB from SO(4) to SO(2).
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|dea of "gauge cooling”

For lattice gauge theory,

Link variables Uy ,
SU(N) - SL(N, C)

Considering unitarity norm.

1
—tr (UUJr — 1) It is no longer zero.

N
» Itis necessary to control the norm to be small.
—>  ‘“gauge cooling”

Upp — U, 0 Q, € SL(N,C)

r+fi

« (Gauge inv. observables are independent of the gauge cooling.



