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Introduction 

 In many interesting physical system, the fermion determinant becomes complex. 

     And its phase plays an important role in the determination of the vacuum.  

the fermion determinant may cause the singular drift problem, 

which is associated with the appearance of small eigenvalues of Dirac op.. 

• QCD at low temperature and high density 

 

• superstring theory (type IIB matrix model) 

exotic fermion condensates 

SSB of SO(10)  down to SO(4) 

 If one applies the complex Langevin method (CLM), 

wrong results 

speculations 

[Parisi ’83] [Klauder ’83] 



Our strategy 
 We propose to avoid this problem  

     by introducing a fermion bilinear term in the action and modify the Dirac op. 

 

 

 

 

 

 After that, we get the results for the original system 

     by extrapolating the parameter 𝑀 to zero using reliable data only. 

 We test this idea in a simple matrix model with rotational SO(4) symmetry. 

The obtained results agree well with  

the predictions obtained by the Gaussian expansion method. 

This modification deforms the eigenvalue distribution. 

 The phase of the fermion determinant induces the SSB of SO(4) down to SO(2). 

cf) phase quenched model            no SSB 

[Nishimura-Okubo-Sugino ’05] 

new criterion (arXiv:1606.07627) 
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The SO(4)-symmetric matrix model 
 Partition function 

 SO(4) rotational symmetry 

suggested by the Gaussian expansion method 

 The fermion determinant induces the SSB of SO(4) 

 boson action 

 det 𝐷 is complex 

:             gamma matrices 

:               Hermitian matrices 

 fermion determinant 

[Nishimura-Okubo-Sugino ’05] 

This is exactly “massless” system 

𝜇 = 1~4 

[Nishimura ‘02] 



1. introduce a external field in the action to break SO(4) sym. 

 

 

 

2.  𝑁 → ∞ 

3. extrapolate 𝜖 to zero.  

 

Order parameters for the SSB of SO(4) 

Here we chose  

 define the order parameters 

and 

 In order to see the SSB 

 In the Gaussian expansion method, 

SO(2) case : 

SO(3) case : 

comparing the free energy 

 

SO(2)-sym. vacuum is favored. 

here 
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The application of the CLM to the model 

 complex Langevin equation 

 drift term 

zero-eigenvalues of 𝐷 correspond to a pole. 

𝜂𝜇 𝑡  : 𝑁 × 𝑁 Hermitian matrices   

𝑃(𝑋, 𝑡) needs to damp rapidly around the pole  

in order to justify the CLM. 

gauge cooling for the norm 
𝑋𝜇: 𝑁 × 𝑁 Hermitian matrices 

            → 𝑁 × 𝑁 complex  matrices 
Then 

𝑋𝜇: 𝑁 × 𝑁 Hermitian matrices 

            → 𝑁 × 𝑁 complex  matrices 

ゼロ固有値は本来積分に寄与しないが 

複素ランジュバン法ではゼロ固有値近傍の 

複素平面上にいる配位が寄与するために 

Singular-drift問題が起こる。 

仮に特異点が実軸上に無い場合でもsingular-drift問題が 

起こることが複素平面上の点がまさに問題を引き起こして 

いることを意味する 

 action 

 The eigenvalues of 𝐷 close to zero cause the singular-drift problem. 



The singular-drift problem 

𝜖 = 0.1 𝜖 = 0.3 𝜖 = 0.5 

 Below some critical 𝜖, the CLM does not work due to  the singular-drift problem. 

 We try to solve this problem by introducing a fermion bilinear term in the action. 

 The eigenvalue distribution of the Dirac op. 



Introduction of a fermion bilinear term 

 introduce a fermion bilinear term Δ𝑆𝑓 in the action 

 The eigenvalue distribution shifts to the real direction. 

The CLM becomes valid even at small 𝜖. 
𝜖 = 0.2,  𝑚𝑓 = 1.0 

𝜖 = 0.2,  𝑚𝑓 = 0 

N=48 

N=48 

 This breaks the SO(4) symmetry minimally down to SO(3). 

here we used 

 First we investigate the SSB of  this SO(3). 

: parameter 



Validity of the CLM 

𝜑 𝑛  : probability distribution of  

          the magnitude 𝑛 

𝑛  : the magnitude of the drift term 

 𝜑(𝑛) for 𝜖 ≥ 0.2 damps exponentially 

    (but not for 𝜖 ≤ 0.1 ).  

 

 From the histogram of the magnitude of the drift, 

     the validity of the CLM can be judged. 
[Nagata-Nishimura-Shimasaki ’16] 

Shimasaki’s talk, Nagata’s talk 

𝜑(𝑛) should damp faster than exponential. 

power-law 

exponential 

   𝑚𝑓 = 1.0    

This enables us to extrapolate 𝜖 using correct data only. 

 new criterion 
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Extrapolation to 𝜖 = 0 

SO(3) → SO(2) 

= 1.74(2) 

= 1.731(8) 

= 1.422(9) 

= 1.11(2) 

SO(2) 

 order parameters for finite 𝑚𝑓 

 the order parameter for 𝑚𝑓 = 1.0 

the region of validity 

𝜖 (parameter of  

     the symmetry breaking term) 

SSB 

Y.I.-Nishimura, work in progress 



𝜆1 = 1.97(4) 

 

𝜆4 = 0.71(3) 

 

𝜆2 = 2.04(5) 

 
𝜆3 = 1.08(8) 

 

 order parameters 

previous results  (Gaussian expansion method) 

SSB from SO(4) to SO(2) 

SO(2) 

Extrapolation to 𝑚𝑓 = 0 Y.I.-Nishimura, work in progress 



Summary 
 For the success of the CLM in the present case, 

     it was crucial to overcome the singular-drift problem. 

 

 Our strategy: 
     we deformed the Dirac op. while maintaining the qualitative feature 

     of vacuum as much as possible. 

     Then, we extrapolated the deformation parameter to zero. 

 

 In the SO(4)-sym. matrix model, 

     we had to introduce infinitesimal symmetry breaking terms to probe the SSB. 

 

•  By using the criterion to justify the method, we can extrapolate the parameter  

     using reliable data only. 

 

 

 This strategy would be useful in finite density QCD at low temperature 

     and high density. 

• Since various exotic fermion condensates are expected there,  

     deforming the Dirac op. with the corresponding bilinear term   

     would not disturb the vacuum significantly. 

The results agree with the prediction obtained by the GEM. 





Future Works 

 Application to the IKKT matrix model which has the SO(10) symmetry. 

It is suggested that the SO(10)  breaks down to SO(3)   

    by the Gaussian expansion method. 

• The non-perturbative formulation of superstring theory. 

• It is expected that 4d space emerges from compact 10d space. 

We need to study this from first-principle calculation using the CLM. 

It is based on the systematic calculation, and using approximations. 

 The finite density QCD 

In the high density low temperature phase, introducing an external source 

as we did here may help reduce the singular-drift problem. 

[Nishimura, Okubo, Sugino ’05] 



Introduction 

𝑆(𝑥) ∈ ℂ 

• 𝑒−𝑆 is no longer regarded as the Boltzmann weight factor. 

• It appears in finite density QCD, SYM theory, real time dynamics etc. 

• The CLM works successfully in finite density QCD and Random matrix theory. 

at deconfined phase 𝑇 > 𝑇𝑐 with quark mass 

[Sexty ’13] [Mollgaard, Splittorff ’14] [Seiler, Sexty, Stamatescu ’12] 

•  certain problems often appear in the CLM, which leads to wrong results. 

 The complex Langevin method 

 Complex action problem 



The complex Langevin method 

𝑆(𝑥) ∈ ℂ 

For the partition function with a complex action 

 The probability distribution satisfies the Fokker-Planck like equation 

  the complex Langevin equation  

  

𝜂 : white noise 

𝑡 : the Langevin time 

real 

 complexify 𝑥 and consider  holomorphic extension of 𝑆  

[Parisi ’83] [Klauder ’83] 



Criteria for the CLM to be justified 

 The crucial point is that there exists a real and non-negative weight 𝑃(𝑥, 𝑦)  such that  

For holomorphic observables 𝑂 𝑥＋𝑖𝑦 , 

the expectation values is given in the CLM as 

Cf.) Random matrix theory 

: complex  ~𝑒−𝑆(𝑥) 

𝑃𝑒𝑞(𝑥, 𝑦)  needs to damp rapidly 
in the imaginary direction. 

around singularities of the drift term. 

[Nishimura, Shimasaki ’15] [Aarts, James, Seiler, Stamateseu ’11] 

Holomorphyは複素化で倍に増やした自由度を 

半分にするために必要. 

もしくはKey relationを証明する際にも必要. 

• In particular, fermion determinant will cause the singular-drift problem. 

We propose a new technique to resolve this problem in such a case. 

gauge cooling 



:  self-adjoint op. 

Equivalence to the path integral 
 We assume 

Then, the FP eq. becomes 

𝑡 → ∞ 

mode expansion 

Thus, we obtain 

up to normalization dominant 

 The expectation value 



Proof of the relation 

 at 𝑡 = 0, we can choose 

The relation holds. 

 for an arbitrary 𝑡,   we need to show the below relations 

𝑃𝑒𝑞(𝑥, 𝑦)  damps rapidly 

in the imaginary direction. 

around singularities of the drift term. 

 the time-dependent observable is defined by 



partial derivative 

FP eq. 

for a holomorphic function 

 We show that 𝐹(𝑡, 𝜏) is independent of 𝜏 

 consider time interpolating function 



introduction of a fermion mass term in the 3rd direction 

Introducing a mass term to fermions 

Here, we used 

This term makes the eigenvalue distribution of 𝐷 to avoid the pole. 

𝑚𝑓 = 0.5 𝑚𝑓 = 0 for 𝜖 = 0.1 

we can extrapolate the values of  𝜆𝑖  using much smaller 𝜖. 



1. taking the 𝜖 → 0 limit with 𝑚𝑓 fixed. 

2. taking the 𝑚𝑓 → 0 limit. 

𝜆1 = 2.15(6) 

 

𝜆4 = 0.654(9) 

 

𝜆2 = 2.15(7) 

 
𝜆3 = 0.99(4) 

 

previous result 

The result clearly shows the SSB from SO(4) to SO(2). 

SO(2) 

Improvement by means of fermion mass terms 
𝜆

𝑖
 



𝜖 = 0.1 𝜖 = 0.2 𝜖 = 0.5 



Idea of “gauge cooling” 

“gauge cooling” 

For lattice gauge theory, 

 
Link variables 𝑈𝑥,𝜇 

𝑆𝑈 𝑁 → 𝑆𝐿(𝑁, ℂ) 

Considering unitarity norm. 

It is no longer zero. 

• It is necessary to control the norm to be small. 

Ω𝑥 ∈ 𝑆𝐿(𝑁, ℂ) 

• Gauge inv. observables are independent of the gauge cooling. 


