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Free-energy differences in LGTs

In lattice gauge theories the expectation values of a large set of physical quantities is
naturally related to the computation (via Monte Carlo simulations) of free-energy
differences.

For example:

• equilibrium thermodynamics (pressure)

• ’t Hooft loops

• magnetic susceptibility

In many cases the calculation of ∆F is a computationally challenging problem: this
motivates the search for new methods and algorithms.

In this talk a novel (in LGTs) method to calculate directly free-energy differences based
on Jarzynski’s relation is presented. In general we are interested in any case in which we
compute the ratio of partition functions of physical systems, i.e. expressed in terms of
well-defined fields and couplings.
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1 Jarzynski’s relation

2 Benchmark study I: interface free energy in Z2 gauge model

3 Benchmark study II: pressure in SU(2) gauge theory

4 Future applications
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Jarzynski’s equality - I

Jarzynski’s equality [Jarzynski, 1997] relates the exponential statistical average of the
work done on a system during a non-equilibrium process with the difference between the
initial and the final free energy of the system.
For an isothermal transformation it can be written as

〈
exp

(
−W (λi , λf )

T

)〉
= exp

(
−∆F

T

)

The evolution of the system is performed by changing (continuously or discretely) a
chosen set λ of one or more parameters, such as the couplings or the temperature of the
system.
In each step of the process the value of λ is changed and the system is brought out of
equilibrium.
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Jarzynski’s equality - II

〈
exp

(
−W (λi , λf )

T

)〉
= exp

(
−∆F

T

)

• on the r.h.s. exp
(
−∆F

T

)
= Z(T ,λf )

Z(T ,λi )
where ∆F = F (λf )− F (λi )

• W (λi , λf ) is the work made on the system to change the control parameter from λi

to λf . If the transformation is discrete (like a Markov chain in MC simulations),
then the process is divided into N steps and the total work is

W (λi ≡ λ0, λf ≡ λN ) =
N−1∑
n=0

(
Hλn+1 [φn]− Hλn [φn]

)
where φn is the configuration of the variables of the system at the n-th step of the
transformation

• the 〈...〉 indicates the average on all possible realizations of the non-equilibrium
transformation
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Jarzynski’s equality - Comments

• The equality requires no particular assumptions and holds under very general
conditions (e.g. the detailed balance condition for Markov chains)

• It can be extended for non-isothermal transformations [Chatelain, 2007]

• In Monte Carlo simulations we can control
• N, the number of steps for each transformation between initial and final value of the

parameter λ
• nr , the number of “trials”, i.e. realizations of the non-equilibrium transformation

• A systematic discrepancy appears between the results of the ’direct’ (λi → λf ) and
the ’reverse’ (λf → λi ) transformation. One has to choose a suitable combination of
N and nr in order to obtain convergence.
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Benchmark study I: interface free energy in Z2 gauge model



Interfaces in the Z2 gauge model

Why study interfaces?

• experimental applications in condensed matter systems

• appear in many contexts also in HEP (“domain walls” at finite T , ’t Hooft loops)

• also related to flux tubes in confining gauge theories which can be studied with
string-theory tools
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Interfaces in the Z2 gauge model

Why study interfaces?

• experimental applications in condensed matter systems

• appear in many contexts also in HEP (“domain walls” at finite T , ’t Hooft loops)

• also related to flux tubes in confining gauge theories which can be studied with
string-theory tools

The Z2 gauge model in 3 dimensions is the simplest lattice gauge theory in which to
study interfaces: it is described by a Wilson action with Z2 variables and possesses a
confining phase for small values of the inverse coupling βg .

It can be exactly rewritten through the Kramers-Wannier duality as the 3-dimensional
Ising model on the dual lattice:

H = −β
∑
x,µ

Jx,µ σx σx+aµ̂

where

β = −1

2
ln tanhβg
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Interface free energy

To create an interface we induce a frustration on the system, by imposing Jx,µ = −1
only for the couplings in a specific slice of the lattice (and only in one direction) and
setting the remaining ones to 1.

The free energy associated with this interface can be expressed as the ratio between two
partition functions:

• one where all couplings are set to Jx,µ = 1 (periodic boundary conditions)

• another in which the couplings between the first and last slice in a specific direction
µ are set to Jx,µ = −1 (antiperiodic boundary conditions)

Za

Zp
= N0 exp(−F (1))

where N0 is the size of the lattice in the µ direction (an improved definition [Caselle et
al., 2007] can be used to account for multiple interfaces in finite-size systems).
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Results in the Z2 gauge model

In order to compute the Za/Zp ratio we can apply the Jarzynski’s relation by gradually
varying the Jx,µ parameter of the chosen slice from 1 to -1 (and viceversa):

Jx,µ(n) = 1− 2n

N

where N is the total number of steps between periodic (Jx,µ(0) = 1) and antiperiodic
(Jx,µ(N) = −1) boundary conditions.
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The results from ’direct’ and
’reverse’ transformations
converge to older results when
N is large enough.

The results obtained changing
the interface size L can be
compared with the analytical
prediction of the effective
string model.
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Benchmark study II: pressure in SU(2) gauge theory



Equilibrium thermodynamics in non-Abelian gauge theories

• The thermal properties of QCD and QCD-like theories are particularly well suited for
being studied on the lattice, due to non-perturbative nature of the deconfinement
transition.

• The low-temperature phase (T < Tc ) can be studied with great accuracy and lattice
results close to the critical temperature can be compared with a gas of massive,
non-interacting hadrons.

• For pure Yang-Mills theories this is even more dramatic and lattice data in the
confining region have been compared in detail with the prediction of a glueball gas
with an Hagedorn spectrum [Meyer, 2009; Borsányi et al., 2012; Caselle et al., 2015].
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Alessandro Nada (UniTo & INFN) Applications of Jarzynski’s relation in LGTs 26/07/2016



Pressure on the lattice

On an hypercubic lattice of size Nt ×N3
s , the temperature is determined by the inverse of

the temporal extent (with periodic boundary conditions): T = 1/(a(βg )Nt). In practice,
the temperature is controlled by the inverse coupling βg = 2Nc

g2 .

The pressure p in the thermodynamic limit equals the opposite of the free energy density

p ' −f =
T

V
logZ(T ,V )

and a common way to estimate it on the lattice is using the so-called “integral
method”[Engels et al. (1990)]:

p(T ) =
1

a4

1

Nt N3
s

∫ βg (T )

0

dβ′g
∂ logZ

∂β′g

where the integrand is calculated from plaquette expectation values.
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Pressure with Jarzynski’s relation

Jarzynski’s relation gives us a direct method to compute the pressure: we can change the
parameter βg controlling the temperature T in a non-equilibrium transformation!

The difference of pressure between two temperatures T and T0 is

p(T )

T 4
− p(T0)

T 4
0

=

(
Nt

Ns

)3

ln〈e−WSU(Nc )〉

with WSU(Nc ) being the “work” made on the system:

WSU(Nc ) =
N−1∑
n=0

[
SW (β(n+1)

g , Û)− SW (β(n)
g , Û)

]
;

here SW is the standard Wilson action and Û is a configuration of SU(Nc ) variables on
the links of the lattice.

Several values of this difference have been computed with this algorithm in the proximity
of the deconfining transition (for temperatures T < Tc ), using either N = 1000 or
N = 2000 steps and nr = 30 transformations for each point.
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here SW is the standard Wilson action and Û is a configuration of SU(Nc ) variables on
the links of the lattice.

Several values of this difference have been computed with this algorithm in the proximity
of the deconfining transition (for temperatures T < Tc ), using either N = 1000 or
N = 2000 steps and nr = 30 transformations for each point.

Alessandro Nada (UniTo & INFN) Applications of Jarzynski’s relation in LGTs 26/07/2016



Pressure with Jarzynski’s relation

Jarzynski’s relation gives us a direct method to compute the pressure: we can change the
parameter βg controlling the temperature T in a non-equilibrium transformation!

The difference of pressure between two temperatures T and T0 is

p(T )

T 4
− p(T0)

T 4
0

=

(
Nt

Ns

)3

ln〈e−WSU(Nc )〉

with WSU(Nc ) being the “work” made on the system:

WSU(Nc ) =
N−1∑
n=0

[
SW (β(n+1)
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Preliminary results for the SU(2) model

Finite T simulations performed on 723 × 6 lattices. Temperature range is ∼ [0.9Tc ,Tc ].

Excellent agreement with integral method data [Caselle et al., 2015] but using a fraction of CPU

time.
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Some potential applications

• In principle there are no obstructions to the derivation of numerical methods based
on Jarzynski’s relation for fermionic algorithms, opening the possibility for many
potential applications in full QCD

• One example is the calculation of the free energy density in QCD with a
background magnetic field B, in order to measure the magnetic susceptibility of
the strongly-interacting matter.

Methods based on Jarzynski’s relation can be applied in order to perform
non-equilibrium transformations in which the field B itself is changed gradually.

• Another interesting application that we envision is in studies involving the
Schrödinger functional: Jarzynski’s relation could be used to compute changes in
the transition amplitude induced by a change in the parameters that specify the
initial and final states on the boundaries.
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Conclusions

Jarzynski’s equality allows for new ways of computing free-energy differences in lattice
gauge theories. A method based on this relation has been tested for the computation of
two different physical quantities:

• the free energy of an interface in the Z2 gauge model

• the pressure in the confining region of the SU(2) gauge model

In both cases the method proved to be perfectly reliable with a suitable choice of N and
nr ; moreover the computational efficiency is comparable and in many cases superior to
standard methods.
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Thank you for the attention!
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Effective string prediction

With this method (using N ' 106 steps and nr ' 103 trials) we obtained high-precision
results at fixed β and for different interface size L.

These results can be compared with the analytical prediction of the effective string model
which describes the transverse fluctuations of the interface at low energy.

In particular, choosing the Nambu-Goto action as Seff , one can look at the difference
between numerical results and the NG prediction and examine its dependence on the size
L of the interface, in order to understand the nature of the terms that do not arise from
the NG low-energy expansion.
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Dominant realizations

Picture taken from [Jarzynski (2006)]

In most realizations the work is statistically distributed on ρ(W ); however the trials that
dominate the exponential average are in the region where g(W ) = ρ(W )e−βW has the
peak.
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Eliminating the vacuum contribution

The pressure is normalized to the value of p(T ) at T = 0 in order to remove the
contribution of the vacuum. Using the ’integral method’ the pressure can be rewritten
(relative to its T = 0 vacuum contribution) as

p(T )

T 4
= −Nt

4

∫ β

0

dβ′ [3(Pσ + Pτ )− 6P0]

where Pσ and Pτ are the expectation values of spacelike and timelike plaquettes
respectively and P0 is the expectation value at zero T .

Using Jarzynski’s relation one has to perform another transformation βi → βf but on a
symmetric lattice, i.e. with lattice size Ñ4

s instead of Nt × N3
s . The finite temperature

result is then normalized by removing the T = 0 contribution calculated this way.

p(T )

T 4
=

p(T0)

T 4
0

+

(
Nt

Ns

)3

ln

〈
exp

[
−WSU(Nc )(β

(0)
g , βg )Nt×N3

s

]〉
〈

exp
[
−WSU(Nc )(β

(0)
g , βg )Ñ4

]〉γ
with γ =

(
N3

s × N0

)
/Ñ4.
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Hagedorn spectrum in SU(2) pure gauge theory
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Hagedorn spectrum in SU(2) and SU(3) pure gauge theories
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Jarzynski’s relation for non-isothermal transformations

〈
exp

(
−

N−1∑
n=0

{
Hλn+1 [φn]

Tn+1
− Hλn [φn]

Tn

})〉
=

Z(λN ,TN )

Z(λ0,T0)
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