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DUALITIES

http://homepages.tversu.ru/~s000154/collision/sge_sol_m/images/SGe_solitons41.gif

Kink solitons colliding and annihilating (sine-Gordon model). 
Dual to fermion -- antifermion collision in Thirring model.
The vertical is the value of phi(x), with the convention that the 
potential is ~ cos(phi).  x can be your spatial coordinate (say our x[1]), 
and the movie is playing out in the time axis (say our x[0])



Complex, nonlinear = diversity of 
emergent phenomena

 Topological solitons in 
gauge theories an 
example:  magnetic 
charge without 
elementary magnetic 
charges.

 ‘t Hooft was led to his 
monopole by considering 
the dynamics of Nielsen-
Olesen vortices in SO(3) 
gauge theory --- vortex-
vortex co-annihilation.



The ‘t Hooft – Polyakov proposal

 We may not have discovered any elementary magnetic 
monopoles of electromagnetism in nature, but it is quite 
possible that Yang-Mills theories with adjoint scalars in the 
Coulomb phase have magnetic monopoles that look like 
the Dirac monopole at long distance.
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A monopole with structure

 It turns out that this is a kind of topological soliton.

 Much is known about the classical theory.

 Somewhat less is known about the quantum theory.

 Attempts have been made on the lattice to study the latter 
(e.g. Kibble & Co.).

 This proposal is highly relevant to Montonen-Olive duality and 
S-duality in N=4 super-Yang-Mills

 Of course it is also very important in the Seiberg-Witten theory 
of N=2 SYM.
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 In particular, the ‘t Hooft-Polyakov monopole is supposed to be dual to the W 
bosons, in the Coulomb phase.

 There is some compelling evidence for this in the Montonen-Olive paper, in 
the context of the 2+1 dimensional Georgi-Glashow model.

 It is an unusual duality:  the Lagrangian for the solitons is actually the original 
Lagrangian, but with some redefinition of the couplings.



What is duality?

 A duality can be thought of as a change of variables in the path integral:

 The amazing thing about the Montonen-Olive duality is that

with some appropriate map of the couplings.



S-duality

 Since:

 We expect:

 It is also amusing that we expect elementary field excitations to become 
solitons in the dual theory.

 Also note the electric-magnetic duality.



 More generally, we have an SL(2,Z) duality

 Half-BPS solitons



 W-boson and ‘t Hooft Polyakov monopole

 Under S-duality

they transform into each other.



Seiberg et al. recent work...
https://www.youtube.com/watch?v=IcTgDQwBqfc

search:  seiberg reading between the lines



N=4 N=2

N=1 N=0

Aharony, Seiberg, Tachikawa 2013



‘t Hooft rotation



Higgs at infinity
 This gives rise to a topological soliton

where                                  is the ordinary vacuum Higgs field.



Knobs controlling the mass

 Note that in the case

the topology disappears and the energy of the monopole (mass) goes to zero 
(vacuum).

 Also interesting is that at least in the 2+1 dimensional Georgi-Glashow model 
there is some evidence [Davis et al., hep-lat/0110154] that the monopole mass 
eventually goes to zero in infinite volume.

 We anticipate that this does not happen in N=4, because of the implications for 
the W mass.



 So our goal is to study these solitons on the lattice and to measure their mass.

 The way to do that is to impose boundary conditions that lead to the soliton 
as the leading saddle point solution.

 We can arrange to have either odd numbers of monopoles or even numbers of 
monopoles.



Following:  Davis et al. [hep-lat/0009037, hep-lat/0110154] and
Rajantie [hep-lat/0512006]

 At low temperature

 So the mass of a single monopole can be obtained from



 In fact, the “mass” is the free energy of the monopole.

 It can be used as an order parameter to distinguish the symmetric (conformal) 
from the broken (Coulomb) phase.



 Two questions arise:

1. How do we get these even/odd partition functions?

2. How do we calculate a partition function (free energy) with a Monte Carlo 
calculation?



 The answer to the first question is that we use C-periodic and twisted 
boundary conditions (in space).



 C-periodic is relatively simple:

 Note that this is a symmetry.



 Twisted boundary conditions are a slight generalization:

Note that the order does not matter b/c



 These BCs are inspired by the continuum solution

 As we go from the boundary in the +j direction to the one in the –j direction

Actually, although Davis et al. claim this, I find a small
problem with the last equation...



 OK, so we know how to get the desired ensembles, but how do we compute 
the free energy difference?

 Trick:

Here x is some parameter that appears in the action.



 There will be a value of the bare scalar mass-squared for which the gauge 
symmetry is unbroken and the monopole mass vanishes.  We use that as a 
reference point and integrate from there.  Finite difference approx.:

We can’t have F too negative or we’ll destabilize
the U(1) mode and have a runaway inverse lattice
spacing.

Linear term 
anisotropic lattice

How we introduce mass:



Rajantie 2005For GG, it actually works...

Note that you can identify the
point of symmetry breaking from
the slope.



Finding the boundary mass-squared from 
monopole physics

 We can identify the boundary broken/symmetric from dM:

Rajantie 2005



 It is interesting that one can also measure the renormalized coupling based on 
a finite volume effect:

 This arises from the magnetic Coulomb interaction with periodically extended 
monopole configurations.

 This is interesting for us because we would like to know

in our lattice theory.



Our BCs  --- since our scalars are part of 
the link variables

 In our lattice theory the twisted BCs look like:

 This implies:

 One scalar,     , has a funny boundary condition, so we avoid giving it a vev.



W boson mass

 Problem again with Gauss’ law on      .

 Where does it come from?

Gauss’ law

But

Becomes       function
constraint in the path integral



 This means that if we attempt the standard spectral approach we will fail:

 The solution to this problem is standard:  C-periodic BCs

E.g., this comes up when trying to 
incorporate isospin violating 
corrections.



A common solution

 We impose C-periodic BCs

 This kills the constant mode

 Another way of looking at it is C-conjugate charges in periodically extended 
lattice

 This “eats” the flux





Conclusions

 We have a formulation that has the realistic 
potential of being fine-tuned to recover N=4 SUSY.

 We may see, to some approximation, features of 
N=4 even without the fine-tuning.

 Measuring W and monopole masses could give us 
useful information about the relation between the 
bare and renormalized coupling.

 Based on previous lattice studies, this looks 
possible.

 We are beginning to study dualities in N=4.

 Not discussed:  ‘t Hooft loops and Wilson loops.

Thank you for your attention!



BACKUP SLIDES



Wilson fermion N=4
 Can impose SO(4), gauge invariance

 8-dimensional parameter space to fine-tune in

 Notice rescaling of fields exploited for first three terms---we do that in our 
twisted theory too.



 There has been significant recent progress on the lattice discretization of N=4 
super Yang-Mills (SYM) [Kaplan et al. 05; Catterall et al. 07-present].

 Orbifolding approach; twisting approach; equivalence.

 Other approaches also deserve mention (conjectured equivalence) [Ishii et al. 
08; Ishiki et al. 08-09; Hanada et al. 10; Honda et al. 11-13].

 Plane wave matrix model, planar limit equivalence, large N reduction.



 A necessary ingredient for our previous results on the form of the long 
distance effective action of the twisted lattice N=4 super Yang-Mills theory is 
the existence of a real space renormalization group which preserves the 
lattice structure, both the symmetries and the geometric interpretation of 
the fields.

 We provide an explicit example of such a blocking scheme.

 We also show that rescaling of the lattice fields greatly reduces the number 
of fine-tunings.

 In the case that the moduli space is not lifted by nonperturbative effects, 
there is only a single fine-tuning that would need to be performed.

 It thus becomes comparable to Wilson fermions in terms of fine-tuning.

shift symmetry, lattice gauge invariance, rescaling, moduli space not lifted

Recent work with Catterall



 One motivation for such efforts is that it is highly desirable to test the 
AdS/CFT correspondence at a finite number of colors Nc , and for moderate 
values of the 't Hooft coupling

 Indeed, results in this regime would, in theory, open the way to 
nonperturbative results for quantum gravity.  

 Another reason to study N=4 SYM on the lattice is that the continuum theory 
is an interacting conformal field theory at all scales, unlike the situation with 
theories inside the conformal window, which only approach a conformal fixed 
point in the infrared (IR).

 It is therefore a conformal field theory of a very different character from 
what is typically studied on the lattice.

 3+1 analogues of BKT?



 The key new idea which underlies these new lattice constructions is to 
discretize not the usual theory but a topologically twisted cousin.

 In flat space this corresponds merely to an exotic change of variables --- one 
more suited to discretization.

 In the case of N=4 SYM there are three independent topological twists of the 
theory and the one that is employed in the lattice work is the Marcus or 
Geometric-Langlands twist [Marcus 95;Kapustin, Witten 06].



 The resulting lattice action takes the form

Observes the notion that anything correct should be simple.
Four terms --- will result in four coefficients to fine tune.



 Of course we have to say how the derivatives are implemented:



 The supersymmetry transformation is:



Bianchi identity for Q closed term

then algebra



Primitive vectors



Long distance effective theory allowed 
by lattice symmetries

 In work from 2011 we showed that the most general renormalizable action 
consistent with the lattice symmetries is
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 In 2013 we studied discrete subgroup of R symmetry in twisted formulation.

 This allowed us to write down the other 15 supercharges

 More importantly, imposing any one of these 15 R symmetries forces



 Hence, together with exact Q, restoration of discrete R symmetry guarantees 
N=4 SUSY continuum limit.

 We measured the difference between the transformed plaquette and the 
original plaquette.







 In [Catterall, Giedt 14] we obtained a RG blocking transformation that 
preserves the lattice symmetries:

fine lattice coarse lattice



 Shows that the 2011 analysis of renormalization 
makes sense:  i.e., we really can impose the 
lattice symmetries on the long distance 
effective action.

 It also opens up the possibility of MCRG analysis 
of flow of couplings.









 Amazingly, we did not have to adjust the couplings

 This is perhaps evidence that the couplings are approximately not running; 
i.e., a nearly conformal behavior.

 It is interesting that this is in spite of the R-symmetry violation that we 
measured.



 Given that the violation of SUSY on small scales is modest, perhaps we can 
see some of the interesting features of N=4 SUSY?

 We are beginning to focus on S-duality.

 Identifying the self-dual point would give us valuable information on the map 
between lattice coupling and continuum coupling.


