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http://homepages.tversu.ru/~s000154/collision/sge_sol_m/images/SGe_solitons41.gif

Kink solitons colliding and annihilating (sine-Gordon model). 
Dual to fermion -- antifermion collision in Thirring model.
The vertical is the value of phi(x), with the convention that the 
potential is ~ cos(phi).  x can be your spatial coordinate (say our x[1]), 
and the movie is playing out in the time axis (say our x[0])



Complex, nonlinear = diversity of 
emergent phenomena

 Topological solitons in 
gauge theories an 
example:  magnetic 
charge without 
elementary magnetic 
charges.

 ‘t Hooft was led to his 
monopole by considering 
the dynamics of Nielsen-
Olesen vortices in SO(3) 
gauge theory --- vortex-
vortex co-annihilation.



The ‘t Hooft – Polyakov proposal

 We may not have discovered any elementary magnetic 
monopoles of electromagnetism in nature, but it is quite 
possible that Yang-Mills theories with adjoint scalars in the 
Coulomb phase have magnetic monopoles that look like 
the Dirac monopole at long distance.
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A monopole with structure

 It turns out that this is a kind of topological soliton.

 Much is known about the classical theory.

 Somewhat less is known about the quantum theory.

 Attempts have been made on the lattice to study the latter 
(e.g. Kibble & Co.).

 This proposal is highly relevant to Montonen-Olive duality and 
S-duality in N=4 super-Yang-Mills

 Of course it is also very important in the Seiberg-Witten theory 
of N=2 SYM.
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 In particular, the ‘t Hooft-Polyakov monopole is supposed to be dual to the W 
bosons, in the Coulomb phase.

 There is some compelling evidence for this in the Montonen-Olive paper, in 
the context of the 2+1 dimensional Georgi-Glashow model.

 It is an unusual duality:  the Lagrangian for the solitons is actually the original 
Lagrangian, but with some redefinition of the couplings.



What is duality?

 A duality can be thought of as a change of variables in the path integral:

 The amazing thing about the Montonen-Olive duality is that

with some appropriate map of the couplings.



S-duality

 Since:

 We expect:

 It is also amusing that we expect elementary field excitations to become 
solitons in the dual theory.

 Also note the electric-magnetic duality.



 More generally, we have an SL(2,Z) duality

 Half-BPS solitons



 W-boson and ‘t Hooft Polyakov monopole

 Under S-duality

they transform into each other.



Seiberg et al. recent work...
https://www.youtube.com/watch?v=IcTgDQwBqfc

search:  seiberg reading between the lines



N=4 N=2

N=1 N=0

Aharony, Seiberg, Tachikawa 2013



‘t Hooft rotation



Higgs at infinity
 This gives rise to a topological soliton

where                                  is the ordinary vacuum Higgs field.



Knobs controlling the mass

 Note that in the case

the topology disappears and the energy of the monopole (mass) goes to zero 
(vacuum).

 Also interesting is that at least in the 2+1 dimensional Georgi-Glashow model 
there is some evidence [Davis et al., hep-lat/0110154] that the monopole mass 
eventually goes to zero in infinite volume.

 We anticipate that this does not happen in N=4, because of the implications for 
the W mass.



 So our goal is to study these solitons on the lattice and to measure their mass.

 The way to do that is to impose boundary conditions that lead to the soliton 
as the leading saddle point solution.

 We can arrange to have either odd numbers of monopoles or even numbers of 
monopoles.



Following:  Davis et al. [hep-lat/0009037, hep-lat/0110154] and
Rajantie [hep-lat/0512006]

 At low temperature

 So the mass of a single monopole can be obtained from



 In fact, the “mass” is the free energy of the monopole.

 It can be used as an order parameter to distinguish the symmetric (conformal) 
from the broken (Coulomb) phase.



 Two questions arise:

1. How do we get these even/odd partition functions?

2. How do we calculate a partition function (free energy) with a Monte Carlo 
calculation?



 The answer to the first question is that we use C-periodic and twisted 
boundary conditions (in space).



 C-periodic is relatively simple:

 Note that this is a symmetry.



 Twisted boundary conditions are a slight generalization:

Note that the order does not matter b/c



 These BCs are inspired by the continuum solution

 As we go from the boundary in the +j direction to the one in the –j direction

Actually, although Davis et al. claim this, I find a small
problem with the last equation...



 OK, so we know how to get the desired ensembles, but how do we compute 
the free energy difference?

 Trick:

Here x is some parameter that appears in the action.



 There will be a value of the bare scalar mass-squared for which the gauge 
symmetry is unbroken and the monopole mass vanishes.  We use that as a 
reference point and integrate from there.  Finite difference approx.:

We can’t have F too negative or we’ll destabilize
the U(1) mode and have a runaway inverse lattice
spacing.

Linear term 
anisotropic lattice

How we introduce mass:



Rajantie 2005For GG, it actually works...

Note that you can identify the
point of symmetry breaking from
the slope.



Finding the boundary mass-squared from 
monopole physics

 We can identify the boundary broken/symmetric from dM:

Rajantie 2005



 It is interesting that one can also measure the renormalized coupling based on 
a finite volume effect:

 This arises from the magnetic Coulomb interaction with periodically extended 
monopole configurations.

 This is interesting for us because we would like to know

in our lattice theory.



Our BCs  --- since our scalars are part of 
the link variables

 In our lattice theory the twisted BCs look like:

 This implies:

 One scalar,     , has a funny boundary condition, so we avoid giving it a vev.



W boson mass

 Problem again with Gauss’ law on      .

 Where does it come from?

Gauss’ law

But

Becomes       function
constraint in the path integral



 This means that if we attempt the standard spectral approach we will fail:

 The solution to this problem is standard:  C-periodic BCs

E.g., this comes up when trying to 
incorporate isospin violating 
corrections.



A common solution

 We impose C-periodic BCs

 This kills the constant mode

 Another way of looking at it is C-conjugate charges in periodically extended 
lattice

 This “eats” the flux





Conclusions

 We have a formulation that has the realistic 
potential of being fine-tuned to recover N=4 SUSY.

 We may see, to some approximation, features of 
N=4 even without the fine-tuning.

 Measuring W and monopole masses could give us 
useful information about the relation between the 
bare and renormalized coupling.

 Based on previous lattice studies, this looks 
possible.

 We are beginning to study dualities in N=4.

 Not discussed:  ‘t Hooft loops and Wilson loops.

Thank you for your attention!



BACKUP SLIDES



Wilson fermion N=4
 Can impose SO(4), gauge invariance

 8-dimensional parameter space to fine-tune in

 Notice rescaling of fields exploited for first three terms---we do that in our 
twisted theory too.



 There has been significant recent progress on the lattice discretization of N=4 
super Yang-Mills (SYM) [Kaplan et al. 05; Catterall et al. 07-present].

 Orbifolding approach; twisting approach; equivalence.

 Other approaches also deserve mention (conjectured equivalence) [Ishii et al. 
08; Ishiki et al. 08-09; Hanada et al. 10; Honda et al. 11-13].

 Plane wave matrix model, planar limit equivalence, large N reduction.



 A necessary ingredient for our previous results on the form of the long 
distance effective action of the twisted lattice N=4 super Yang-Mills theory is 
the existence of a real space renormalization group which preserves the 
lattice structure, both the symmetries and the geometric interpretation of 
the fields.

 We provide an explicit example of such a blocking scheme.

 We also show that rescaling of the lattice fields greatly reduces the number 
of fine-tunings.

 In the case that the moduli space is not lifted by nonperturbative effects, 
there is only a single fine-tuning that would need to be performed.

 It thus becomes comparable to Wilson fermions in terms of fine-tuning.

shift symmetry, lattice gauge invariance, rescaling, moduli space not lifted

Recent work with Catterall



 One motivation for such efforts is that it is highly desirable to test the 
AdS/CFT correspondence at a finite number of colors Nc , and for moderate 
values of the 't Hooft coupling

 Indeed, results in this regime would, in theory, open the way to 
nonperturbative results for quantum gravity.  

 Another reason to study N=4 SYM on the lattice is that the continuum theory 
is an interacting conformal field theory at all scales, unlike the situation with 
theories inside the conformal window, which only approach a conformal fixed 
point in the infrared (IR).

 It is therefore a conformal field theory of a very different character from 
what is typically studied on the lattice.

 3+1 analogues of BKT?



 The key new idea which underlies these new lattice constructions is to 
discretize not the usual theory but a topologically twisted cousin.

 In flat space this corresponds merely to an exotic change of variables --- one 
more suited to discretization.

 In the case of N=4 SYM there are three independent topological twists of the 
theory and the one that is employed in the lattice work is the Marcus or 
Geometric-Langlands twist [Marcus 95;Kapustin, Witten 06].



 The resulting lattice action takes the form

Observes the notion that anything correct should be simple.
Four terms --- will result in four coefficients to fine tune.



 Of course we have to say how the derivatives are implemented:



 The supersymmetry transformation is:



Bianchi identity for Q closed term

then algebra



Primitive vectors



Long distance effective theory allowed 
by lattice symmetries

 In work from 2011 we showed that the most general renormalizable action 
consistent with the lattice symmetries is
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 In 2013 we studied discrete subgroup of R symmetry in twisted formulation.

 This allowed us to write down the other 15 supercharges

 More importantly, imposing any one of these 15 R symmetries forces



 Hence, together with exact Q, restoration of discrete R symmetry guarantees 
N=4 SUSY continuum limit.

 We measured the difference between the transformed plaquette and the 
original plaquette.







 In [Catterall, Giedt 14] we obtained a RG blocking transformation that 
preserves the lattice symmetries:

fine lattice coarse lattice



 Shows that the 2011 analysis of renormalization 
makes sense:  i.e., we really can impose the 
lattice symmetries on the long distance 
effective action.

 It also opens up the possibility of MCRG analysis 
of flow of couplings.









 Amazingly, we did not have to adjust the couplings

 This is perhaps evidence that the couplings are approximately not running; 
i.e., a nearly conformal behavior.

 It is interesting that this is in spite of the R-symmetry violation that we 
measured.



 Given that the violation of SUSY on small scales is modest, perhaps we can 
see some of the interesting features of N=4 SUSY?

 We are beginning to focus on S-duality.

 Identifying the self-dual point would give us valuable information on the map 
between lattice coupling and continuum coupling.


