S-duality In Lattice
Super-Yang-Mills*

David Schaich, Simon Catterall (Syracuse U.) J0el Giedt

Rensselaer Polytechnic Institute

Poul Damgaard (Neils Bohr Institute)

* In memory of Tom Kibble




fRUMP

UNIVERSITY




Kink-Antikink Callision
53
43
43
30 W -0 g 10 s V 0
Anosh Joseph (DAMTP) o]

RObel’t We”S (Cambrldge 9 flnance) http://homepages.tversu.ru/~5000154/colIision/sge_stgj‘l‘

Eric Dzienkowski (RPI > U.C. Santa Barbara - start-up) g sorions cotfiding and annihilating {

Dual to fermion -- antifermion collision

. . The vertical is the value of phi(x), with
Tom DEGrand (UﬂlVGfSlty Of COIOradO, BOUIder) potentia| is ~ Cos(phi)_ X can be your Spa'u

and the movie is playing out in the time ax

vV v v Vv

DUJAMTIES

Some duality history:

Kramers (Leiden) & Wannier (Texas) [1941]: “Owing to communication difficulties
authors (G. H. W.) is entirely responsible for the printed text.”




Complex, nonlinear = diversity of
emergent phenomena

» Topological solitons in
gauge theories an
example: magnetic
charge without
elementary magnetic
charges.

» ‘t Hooft was led to his
monopole by considering
the dynamlcs Of Nlelsen_ Fig. 1. The contour C on the sphere around the monopole. We deplace it from Cq to Cy, etc.,
Olesen VOI’ticeS |n SO(B) until it shrinks at the bottom of the sphere. We require that there be no singularity at that point,
gauge theory --- vortex-
vortex co-annihilation.




The “‘t Hooft - Polyakov proposal

» We may not have discovered any elementary magnetic
monopoles of electromagnetism in nature, but it is quite
possible that Yang-Mills theories with adjoint scalars in the
Coulomb phase have magnetic monopoles that look like
the Dirac monopole at long distance.




A monopole with structure

It turns out that this is a kind of topological soliton.
Much is known about the classical theory.

Somewhat less is known about the quantum theory.
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Attempts have been made on the lattice to study the latter
(e.g. Kibble & Co.).

This proposal is highly relevant to Montonen-Olive duality and
S-duality in N=4 super-Yang-Mills

v

» Of course it is also very important in the Seiberg-Witten theory
of N=2 SYM.
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» In particular, the ‘t Hooft-Polyakov monopole is supposed to be dual to the W
bosons, in the Coulomb phase.

UN) = U@Q)N

» There is some compelling evidence for this in the Montonen-Olive paper, in
the context of the 2+1 dimensional Georgi-Glashow model.

» Itis an unusual duality: the Lagrangian for the solitons is actually the original
Lagrangian, but with some redefinition of the couplings.
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» Aduality can be thought of as a change of variables in the path integral
» The amazing thing about the Montonen-Olive duality is that

with some appropriate map of the couplings.



S-duality

» Since:

mw ~ g, Mmono ™~

» We expect:

| =

» It is also amusing that we expect elementary field excitations to become
solitons in the dual theory.

» Also note the electric-magnetic duality.




» More generally, we have an SL(2,2Z) duality
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» Half-BPS solitons
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» W-boson and ‘t Hooft Polyakov monopole

Mg =gv, My =4mv/g

» Under S-duality 7 — —1/7
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they transform into each other.
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‘t Hooft rotation
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Higgs at infinity

» This gives rise to a topological soliton
where Hgy = F' = const. is the ordinary vacuum Higgs field.

H(oo) = F(sinf cos ¢, sin §sin @, cosf)




Knobs controlling the mass

» Note that in the case

F—=0

the topology disappears and the energy of the monopole (mass) goes to zero
(vacuum).

» Also interesting is that at least in the 2+1 dimensional Georgi-Glashow model
there is some evidence [Davis et al., hep-lat/0110154] that the monopole mass
eventually goes to zero in infinite volume.

» We anticipate that this does not happen in N=4, because of the implications for
the W mass.




So our goal is to study these solitons on the lattice and to measure their mass.

» The way to do that is to impose boundary conditions that lead to the soliton
as the leading saddle point solution.

» We can arrange to have either odd numbers of monopoles or even numbers of
monopoles.




Following: Davis et al. [hep-1at/0009037, hep-lat/0110154] and
Rajantie [hep-lat/0512006]

» At low temperature

Zoaa = Zoe PM 4 Zje M 4 ...
Zeyen = Zo+ Zae_zﬁM +--

» So the mass of a single monopole can be obtained from

M= — lim L 1p Zedd
B—ro0 ﬁ Zeven




» In fact, the “mass” is the free energy of the monopole.

» It can be used as an order parameter to distinguish the symmetric (conformal)
from the broken (Coulomb) phase.




» Two questions arise:
1. How do we get these even/odd partition functions?

2. How do we calculate a partition function (free energy) with a Monte Carlo
calculation?




» The answer to the first question is that we use C-periodic and twisted
boundary conditions (in space).

Zeven = 24Cy  ZLodd = Ltw




» C-periodic is relatively simple:

Uu(z + Nj) =U,(z) = 02Uu(z)o2
O(z + Nj) = 2*(z) = —02®(x)02

» Note that this is a symmetry.
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» Twisted boundary conditions are a slight generalization:

Uu(z + Nj) = o;Uu(x)0;
®(x 4+ Nj) = —0;P(x)0;

Note that the order does not matter b/c
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» These BCs are inspired by the continuum solution

L0 ei_.,-k:njak
d = Ay HESTTE
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» As we go from the boundary in the +j direction to the one in the -j direction

L — —Ij, b — —O'jq)O'j, A4 — O'jA,gO'j

Actually, although Davis et al. claim this,
problem with the last equation...




» OK, so we know how to get the desired ensembles, but how do we compute
the free energy difference?

3 =5 ((52)0(32).)

Here x is some parameter that appears in the action.

» Trick:




» There will be a value of the bare scalar mass-squared for which the gauge
symmetry is unbroken and the monopole mass vanishes. We use that as a
reference point and integrate from there. Finite difference approx.:

—(m?2, ., — m? 2 ,
M(m§+1) — M(mZ) = —l]n (exp( (mis 02, Tr e )>mi!tw

B (exp(—(miy, —m3) 3, Tr 8%)) .

How we introduce mass:

AS=F) TilU, nsa
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We can’t have F too negative

the U(1) mode and have ar
TeU]U, = Trl + 2iTxB, — 4TrB2 + - .. spacing.
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For GG, it actually works...
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Figure 2: Quantum monopole mass (points) compared with the classical mass (lines).
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Finding the boundary mass-squared from
monopole physics

» We can identify the boundary broken/symmetric from dM
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» It is interesting that one can also measure the renormalized coupling based on
a finite volume effect:

10.98

_ 7L

» This arises from the magnetic Coulomb interaction with periodically extended
monopole configurations.

EL)=M

» This is interesting for us because we would like to know

g° = F(g3)

in our lattice theory.




Our BCs --- since our scalars are part of
the link variables

» In our lattice theory the twisted BCs look like:
L{a(::: + LEj) = —a,-u;f(a:)aj
» This implies:

A (z + Lej) = 0jAq(z)o;, Ba(z + Lej) = —0;By(x)o;

» One scalar, Ag, has a funny boundary condition, so we avoid giving it a vev.




W boson mass

Becomes §

- - I} 3
» Problem again with Gauss’ law on 7. / constraint i

» Where does it come from?

L3 Apk =0)[(V + E)x=0 — Pr=0] oL —0
5Ao(k = 0)
Ao(k =0) = /&:,3 d*z Ag = Gauss’ law
(V- E)g—o = f &z V-E But
T3 / Bz V-E= da n
o= | dzJ°=Q g or

T = Q=0




» This means that if we attempt the standard spectral approach we will fail:

C(t) =) (WH(t,x)W(0,0)) =0

X

» The solution to this problem is standard: C-periodic BCs

E.g., this comes up when trying to
incorporate isospin violating
corrections.




A common solution

» We impose C-periodic BCs

Az + L) = A5(3) = —Au(a)

» This kills the constant mode

» Another way of looking at it is C-conjugate charges in periodically extended
lattice

» This “eats” the flux







Conclusions

» We have a formulation that has the realistic
potential of being fine-tuned to recover N=4 SUSY.

» We may see, to some approximation, features of
N=4 even without the fine-tuning.

» Measuring W and monopole masses could give us
useful information about the relation between the
bare and renormalized coupling.

» Based on previous lattice studies, this looks
possible.

Thank you for you

» We are beginning to study dualities in N=4.

Not discussed: ‘t Hooft loops and Wilson loops.




BACKUP SLIDES




Wilson fermion N=4

» Can impose SO(4), gauge invariance

1 T —_ 1
S = /d4$ Ti‘{z—gEF#pry -+ g—gz\g-a‘u’DM/\i + g—gngmep(bm + mgqﬁmqﬁm
+m3(AiAi + Xéxi) + nlqsmﬁbmén(bn + 52¢m¢n¢’m¢n + /a1 (Aa [(bij; 4\_7] + Xi [Qsij,—/\—*l

+yzeikt(Aildie, M) + Xildik, Ai]) }

+/d4$ {Hs(ﬁ¢m¢m)2 + K4ﬁ¢m¢nﬁ¢m¢n}

» 8-dimensional parameter space to fine-tune in

» Notice rescaling of fields exploited for first three terms---we do that in our
twisted theory too.




» There has been significant recent progress on the lattice discretization of N=4
super Yang-Mills (SYM) [Kaplan et al. 05; Catterall et al. 07-present].

Orbifolding approach; twisting approach; equivalence.

» Other approaches also deserve mention (conjectured equivalence) [Ishii et al.
08; Ishiki et al. 08-09; Hanada et al. 10; Honda et al. 11-13].

» Plane wave matrix model, planar limit equivalence, large N reduction.




Recent work with Catterall

» A necessary ingredient for our previous results on the form of the long
distance effective action of the twisted lattice N=4 super Yang-Mills theory is
the existence of a real space renormalization group which preserves the
lattice structure, both the symmetries and the geometric interpretation of
the fields.

» We provide an explicit example of such a blocking scheme.

We also show that rescaling of the lattice fields greatly reduces the number
of fine-tunings.

» In the case that the moduli space is not lifted by nonperturbative effects,
there is only a single fine-tuning that would need to be performed.

» It thus becomes comparable to Wilson fermions in terms of fine-tuning.

S5, Q@  shift symmetry, lattice gauge invariance, rescaling, moduli spac




» One motivation for such efforts is that it is highly desirable to test the
AdS/CFT correspondence at a finite number of colors Nc , and for moderate
values of the 't Hooft coupling

A=¢g?’N_,~1

» Indeed, results in this regime would, in theory, open the way to
nonperturbative results for quantum gravity.

» Another reason to study N=4 SYM on the lattice is that the continuum theory
Is an interacting conformal field theory at all scales, unlike the situation with
theories inside the conformal window, which only approach a conformal fixed
point in the infrared (IR).

» It is therefore a conformal field theory of a very different character from
what is typically studied on the lattice.

» 3+1 analogues of BKT?
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The key new idea which underlies these new lattice constructions is to
discretize not the usual theory but a topologically twisted cousin.

In flat space this corresponds merely to an exotic change of variables --- one
more suited to discretization.

In the case of N=4 SYM there are three independent topological twists of the
theory and the one that is employed in the lattice work is the Marcus or
Geometric-Langlands twist [Marcus 95;Kapustin, Witten 06].




» The resulting lattice action takes the form

1
S = @(QA"‘Sclosed)

—(— 1
A = ; a*Tr(XasFub + TI'DE; )ua — Eﬂd)
]. 4 _(_)
Sclosed = _Z Z a eabcderI‘ereDc Xab(m)
Q5=0

Observes the notion that anything correct should be simple.
Four terms --- will result in four coefficients to fine tune.




» Of course we have to say how the derivatives are implemented:

Falz) = DHU(z) = Us(a)lUs(z + ) — Up (@)U (z + €5)
DU @) = Un(@a(z) — Ua( — €Ul — eg)

EabcdeXdeﬁfz_)Xab(m) = CabcdeXde (:L' + eq + eb) [Xab(a")ac(x - ec)
Uz — ec+ e, + ep)Xap(T — €c)]

Us=1+ A, eq & Al
gl(N,C) A, =A,+iB,




» The supersymmetry transformation is:

QZ'{G = ¢m Q"pa = 0: QZ/{_a, =0
Qxap(7) = —Fap(2) =Up(z + ea)la(x) — Ua(z + €5)Us(2)




Bianchi identity for Q closed term

emﬂcdel_)((;_)Tmn (-'B + ec) =0

Emncdeﬁg_)?mn (3: + ec) = Cmnede [?mn(m + ec)ac(x) — zjc(a; +€m + en)?mn(a:)]
Fn(Z) =Un(x + e U (T) — U (z + 0)Un(z)

then algebra




Primitive vectors

Aj lattice

1 1 ) Ss point group symmetry

1 1
a7 (\/wémm

2 1
€3 — (0,—

1
€4 = (0,0,—i,—)
12" v20

4
es = (0,0, 0, ——)
20

@ Friedrich A. Lohmueller, 2000
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Long distance effective theory allowed
by lattice symmetries

» In work from 2011 we showed that the most general renormalizable action
consistent with the lattice symmetries is
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» Hence, together with exact Q, restoration of discrete R symmetry guarantees
N=4 SUSY continuum limit.

» We measured the difference between the transformed plaquette and the
original plaquette.
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» In [Catterall, Giedt 14] we obtained a RG blocking transformation that
preserves the lattice symmetries:

u,;(:c) = U ()Us(z + €5), b_{;(x) = g'_{a(m + ea)z’_{a(x)
d'(z) ¢d(z), 1'(z) =én(z)
Py () E[Ya(z)Ua(z + €a) + Ua(z)a(z + €4)]

xip(z) = g[ﬁa(w + s + 2ep)Up(z + €g + e) Xar(T) + Up(z + 2e4 + e )Ua(z + €4 ‘:
+e€U (T + ea + 2ep) xan(T + €p)Us(z) + Up(z + 2e4 + €5)Xab(T + ea)Ualz

+§ [Xas(Z + ea + es)Ua(x + )Up(Z) + Xab(T + €a + es)Us(z + e o (z

A={a Ei=1 nueuln € Z*} A’ ={2a Zi=1 nueu|n € Z*}

fine lattice coarse lattice




» Shows that the 2011 analysis of renormalization
makes sense: i.e., we really can impose the
lattice symmetries on the long distance
effective action.

» It also opens up the possibility of MCRG analysis
of flow of couplings.
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Figure 1. Determination of the scaling parameter £. Plotted on the vertical axis is £, the rescaling
factor needed to match the 1 x 1 Wilson loop measured on the blocked lattices to its value on the
coarse lattice.
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Figure 3. A comparison of W(2,2); ; and W(2,2).oarse With the rescaling factor taken into account.




» Amazingly, we did not have to adjust the couplings

» This is perhaps evidence that the couplings are approximately not running;
i.e., a nearly conformal behavior.

» It is interesting that this is in spite of the R-symmetry violation that we
measured.




» Given that the violation of SUSY on small scales is modest, perhaps we can
see some of the interesting features of N=4 SUSY?

We are beginning to focus on S-duality.

Identifying the self-dual point would give us valuable information on the map
between lattice coupling and continuum coupling.

Jcont.,.SD = 4T,  Giat..SD =7




