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Complex Langevin dynamics

solved the sign problem in a selection of theories
including QCD with heavy quarks

see talks by Attanasio, Jäger, Sexty, . . .

presence of the fermion determinant causes a
theoretical problem

absence of holomorphicity of the Langevin drift

requires a reconsideration of the formal derivation

understanding/assessment applicable to generic cases
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Outline

formal derivation revisited

interplay between poles and distribution

extract generic lessons

sequence of models

conclusions
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Formal derivation revisited

complex weight: ρ(x) ∈ C two expectation values:

〈O〉ρ(t) =

∫
dx ρ(x, t)O(x) 〈O〉P (t) =

∫
dxdy P (x, y; t)O(x+iy)

with Fokker-Planck equations for the distributions

ρ̇(x, t) =∇x [∇x −K(x)] ρ(x, t)

Ṗ (x, y; t) = [∇x (∇x −Kx)−∇yKy]P (x, y; t)

and Langevin drift terms

K(z) = ∇zρ(z)/ρ(z) Kx = ReK(z) Ky = ImK(z)

equivalence: 〈O〉ρ(t)
?
= 〈O〉P (t)

GA, ES, IOS, 0912.3360 (PRD), + James 1101.3270 (EPJC)

Lattice 2016, Southampton – p. 4



Formal derivation revisited

equivalence 〈O〉ρ(t) = 〈O〉P (t) provided

holomorphicity of drift and observables

fast decay of distribution P (x, y) at y → ±∞

proof requires partial integration at |y| → ∞ without
boundary terms
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Formal derivation revisited

equivalence 〈O〉ρ(t) = 〈O〉P (t) provided

holomorphicity of drift and observables

fast decay of distribution P (x, y) at y → ±∞

proof requires partial integration at |y| → ∞ without
boundary terms

zero in measure: ρ(x = zp) = 0

drift K(z) = ∇zρ(z)/ρ(z) has pole at z = zp

meromorphic, not holomorphic ⇒ reconsider derivation

example: QCD Z =
∫
DU detM(U)e−SYM

detM(U) = 0 for some U ∈ SL(N,C)
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Formal derivation revisited

exclude region around the pole: |z − zp| > ǫ

derivation goes through

new potential boundary terms at z ∼ zp

study behaviour of P (x, y)O(x+ iy) around z ∼ zp

note: time evolution of holomorphic observables

Ȯ(z; t) = L̃O(z; t) L̃ = [∇z +K(z)]∇z

solution
O(z; t) = eL̃tO(z; 0) =

∑
k

tk

k!
L̃kO(z; 0)

O(z; t) formally has essential singularity at z = zp

counteracted by P (x, y) → 0 as z → zp
and nontrivial angular dependence (see below)

Lattice 2016, Southampton – p. 6



Poles and the distribution

three logical possibilities: poles are

outside the distribution

on the edge of the distribution

inside the distribution

zero at zp of order np

ρ(x) = (x− zp)
npe−S(x)

generic flow around a pole: drift

K(z) =
ρ′(z)

ρ(z)
=

np
z − zp

− S′(z)
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directions

angular dependence

multiple circlings of the pole not expected (see below)
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Pole in simple, generic model

properties of distribution P (x, y) for generic case

ρ(x) = (x− zp)
npe−βx2

β ∈ R zp = xp + iyp ∈ C

follow analysis of GA, Giudice, ES, 1306.3075 (Annals of Physics)

stripes in xy plane where P (x, y) = 0

decay at |y| → ∞ no problem

y2p < 2np/β : P (x, y) 6= 0 when 0 < y < yp

y2p > 2np/β : P (x, y) 6= 0 when 0 < y < y− < yp

pole
on
edge
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y
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outside
distribution
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Pole in simple, generic model

pole outside: CL reproduces exact results, formal
derivation holds

pole on edge: depends on parameter values, i.e. on
properties of distribution

example: zp = i np = 2 β = 1.6, 3.2, 4.8

〈zn〉

for

n = 1, 2, 3, 4

β = 1.6 ✗
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Pole in simple, generic model

compare distributions: P (x, y) 6= 0 for 0 < y < yp = 1

β = 1.6 β = 3.2

small β: P (x, y) 6= 0 right up to the pole

larger β: much faster decay

small β: boundary terms at z = zp due to partial integration

⇒ CL not valid
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Pole in simple, generic model

partially integrated distribution Py(y) =
∫
dxP (x, y)
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small β: P (x, y) → 0 linearly

larger β: P (x, y) → 0 exponentially

boundary terms for small β: CL not valid
no boundary terms for larger β: CL valid

consistent

with formal

derivation
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Towards more realistic models

carry over the essence to more realistic models

devise diagnostics applicable also in QCD

U(1) one-link model (used many times)

GA, IOS, 0807.1597 (JHEP), Mollgaard, Splittorff, 1309.4335 (PRD)

ρ(x) = [1 + κ cos(x− iµ)]np exp(β cosx)

findings (roughly): κ < 1: CL X κ > 1: CL ✗
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Towards more realistic models

carry over the essence to more realistic models

devise diagnostics applicable also in QCD

U(1) one-link model (used many times)

GA, IOS, 0807.1597 (JHEP), Mollgaard, Splittorff, 1309.4335 (PRD)

ρ(x) = [1 + κ cos(x− iµ)]np exp(β cosx)

findings (roughly): κ < 1: CL X κ > 1: CL ✗

consider β = 0.3 κ = 2 µ = 1 np = 1, 2, 4

poles at zp = ±xp + iµ

distribution P (x, y) 6= 0 in strip only, y− < y < y+

strong np dependence on correctness
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U(1) one-link model

β = 0.3 κ = 2 µ = 1 np = 1, 2, 4

np = 1 ✗

np = 2 ✗

np = 4 X
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U(1) one-link model

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

x

y

np = 2: classical flow histogram (logarithmic scale)

distribution contained in strip, poles inside strip

but poles pinch the distribution: two ∼ disconnected
regions ⇒ zero acts as bottleneck, even in C

no circling of poles
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U(1) one-link model

partially integrated distribution Px(x) =
∫
dy P (x, y)
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boundary terms for small np: CL not valid
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Extend to more realistic models

complexified configuration space not accessible

use complex determinant D with weight Dnp instead

determinant in U(1) model for np = 2:
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pole pinches the distribution, P → 0 at RedetD = 0
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Extend to more realistic models

two disconnected regions:

RedetD ≶ 0

treat as separate regions
with constrained partition
functions Z±

positive/negative weights

w± =
Z±

Z+ + Z−

typically w− ≪ w+
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SU(3) effective one-link model
see also poster by Nucu Stamatescu at XQCD16

same structure observed in more realistic models
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scatter plot of complex determinant

model designed to understand heavy dense QCD

pole pinches the distribution, even in C

separate analysis of pos/neg parts possible
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Extend to more realistic models

analysis of determinant

easy to extend to heavy dense QCD

full QCD numerically more intensive

but same principle holds

two disjunct distributions

zero/pole acts as a bottle neck

higher order of zero (larger np):

stronger drift towards and then away from pole

stronger pinching

typically better agreement with expected results

see next talk by Dénes Sexty and poster by Nucu Stamatescu at XQCD16
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Summary

zero of order np [detD]np

formal derivation revisited, meromorphic drift

common features in all models

pole pinches the distribution

two disjunct regions

can be analysed separately

larger np typically yields better results

not specific to simple models

RedetD is relevant variable, accessible in (HD)QCD

see next talk by Dénes Sexty
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