On complex Langevin dynamics and zeroes of the fermion determinant

Gert Aarts

with Erhard Seiler, Dénes Sexty and Nucu Stamatescu

Complex Langevin dynamics

solved the sign problem in a selection of theories including QCD with heavy quarks

see talks by Attanasio, Jäger, Sexty, ...

presence of the fermion determinant causes a theoretical problem

absence of holomorphicity of the Langevin drift

- requires a reconsideration of the formal derivation
- understanding/assessment applicable to generic cases

Outline

formal derivation revisited

interplay between poles and distribution

extract generic lessons

sequence of models

conclusions

complex weight: $\rho(x) \in \mathbb{C}$ two expectation values:

$$\langle O \rangle_{\rho(t)} = \int dx \,\rho(x,t)O(x) \qquad \langle O \rangle_{P(t)} = \int dxdy \,P(x,y;t)O(x+iy)$$

with Fokker-Planck equations for the distributions

$$\dot{\rho}(x,t) = \nabla_x \left[\nabla_x - K(x) \right] \rho(x,t)$$
$$\dot{P}(x,y;t) = \left[\nabla_x \left(\nabla_x - K_x \right) - \nabla_y K_y \right] P(x,y;t)$$

and Langevin drift terms

$$K(z) = \nabla_z \rho(z) / \rho(z)$$
 $K_x = \operatorname{Re} K(z)$ $K_y = \operatorname{Im} K(z)$

equivalence: $\langle O \rangle_{\rho(t)} \stackrel{?}{=} \langle O \rangle_{P(t)}$

GA, ES, IOS, 0912.3360 (PRD), + James 1101.3270 (EPJC)

equivalence

$$\langle O \rangle_{\rho(t)} = \langle O \rangle_{P(t)}$$
 provided

- holomorphicity of drift and observables
- fast decay of distribution P(x, y) at $y \to \pm \infty$

proof requires partial integration at $|y| \to \infty$ without boundary terms

equivalence

$$\langle O \rangle_{\rho(t)} = \langle O \rangle_{P(t)}$$
 provided

- holomorphicity of drift and observables
- fast decay of distribution P(x, y) at $y \to \pm \infty$

proof requires partial integration at $|y| \to \infty$ without boundary terms

zero in measure:
$$\rho(x = z_p) = 0$$

• drift $K(z) = \nabla_z \rho(z) / \rho(z)$ has pole at $z = z_p$

 \checkmark meromorphic, not holomorphic \Rightarrow reconsider derivation

example: QCD $Z = \int DU \det M(U) e^{-S_{YM}}$ $\det M(U) = 0$ for some $U \in SL(N, \mathbb{C})$

- exclude region around the pole: $|z z_p| > \epsilon$
- derivation goes through
- new potential boundary terms at $z \sim z_p$
- study behaviour of P(x, y)O(x + iy) around $z \sim z_p$

note: time evolution of holomorphic observables

•
$$\dot{O}(z;t) = \tilde{L}O(z;t)$$
 $\tilde{L} = [\nabla_z + K(z)] \nabla_z$
• solution
 $O(z;t) = e^{\tilde{L}t}O(z;0) = \sum_k \frac{t^k}{k!} \tilde{L}^k O(z;0)$

- O(z;t) formally has essential singularity at $z = z_p$
- counteracted by $P(x, y) \rightarrow 0$ as $z \rightarrow z_p$ and nontrivial angular dependence (see below)

Poles and the distribution

three logical possibilities: poles are

- outside the distribution
- on the edge of the distribution
- inside the distribution

zero at z_p of order n_p

$$\rho(x) = (x - z_p)^{n_p} e^{-S(x)}$$

generic flow around a pole: drift

$$K(z) = \frac{\rho'(z)}{\rho(z)} = \frac{n_p}{z - z_p} - S'(z)$$

- attractive/repulsive directions
- angular dependence

multiple circlings of the pole not expected (see below)

properties of distribution P(x, y) for generic case

$$\rho(x) = (x - z_p)^{n_p} e^{-\beta x^2} \qquad \beta \in \mathbb{R} \qquad z_p = x_p + iy_p \in \mathbb{C}$$

follow analysis of GA, Giudice, ES, 1306.3075 (Annals of Physics)

stripes in xy plane where P(x, y) = 0
decay at |y| → ∞ no problem $y_p^2 < 2n_p/\beta$: P(x, y) ≠ 0 when $0 < y < y_p$ $y_p^2 > 2n_p/\beta$: P(x, y) ≠ 0 when $0 < y < y_- < y_p$ pole y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
<li

a)

b)

edge

distribution

- pole outside: CL reproduces exact results, formal derivation holds
- pole on edge: depends on parameter values, i.e. on properties of distribution

example: $z_p = i$ $n_p = 2$ $\beta = 1.6, 3.2, 4.8$

compare distributions: $P(x, y) \neq 0$ for $0 < y < y_p = 1$

small β : $P(x, y) \neq 0$ right up to the pole

Solution larger β : much faster decay

small β : boundary terms at $z = z_p$ due to partial integration \Rightarrow CL not valid

■ small β : $P(x, y) \rightarrow 0$ linearly

Iarger β : $P(x, y) \rightarrow 0$ exponentially

boundary terms for small β : CL not valid no boundary terms for larger β : CL valid *consistent with formal derivation*

Towards more realistic models

• carry over the essence to more realistic models • devise diagnostics applicable also in QCD U(1) one-link model (used many times) GA, IOS, 0807.1597 (JHEP), Mollgaard, Splittorff, 1309.4335 (PRD) $\rho(x) = [1 + \kappa \cos(x - i\mu)]^{n_p} \exp(\beta \cos x)$

findings (roughly): $\kappa < 1$: CL \checkmark $\kappa > 1$: CL \checkmark

Towards more realistic models

carry over the essence to more realistic models devise diagnostics applicable also in QCD U(1) one-link model (used many times) GA, IOS, 0807.1597 (JHEP), Mollgaard, Splittorff, 1309.4335 (PRD) $\rho(x) = \left[1 + \kappa \cos(x - i\mu)\right]^{n_p} \exp(\beta \cos x)$ findings (roughly): $\kappa < 1$: CL \checkmark $\kappa > 1$: CL \checkmark consider $\beta = 0.3$ $\kappa = 2$ $\mu = 1$ $n_p = 1, 2, 4$

• poles at
$$z_p = \pm x_p + i\mu$$

- distribution $P(x, y) \neq 0$ in strip only, $y_- < y < y_+$
- strong n_p dependence on correctness

U(1) one-link model

strong dependence on order of zero, n_p

U(1) one-link model

distribution contained in strip, poles inside strip

- but poles pinch the distribution: two \sim disconnected regions \Rightarrow zero acts as bottleneck, even in \mathbb{C}
- no circling of poles

U(1) one-link model

▶ small n_p : $P(x, y) \rightarrow 0$ linearly at pole

■ larger
$$n_p$$
: $P(x, y) \to 0$ rapidly

boundary terms for small n_p : CL not valid no boundary terms for larger n_p : CL valid *consistent with formal derivation*

Extend to more realistic models

- complexified configuration space not accessible
- use complex determinant D with weight D^{n_p} instead

determinant in U(1) model for $n_p = 2$:

• pole pinches the distribution, $P \rightarrow 0$ at $\operatorname{Re} \det D = 0$

Extend to more realistic models

- two disconnected regions: Re det D ≤ 0

 treat as separate regions with constrained partition functions Z₊
- positive/negative weights

$$w_{\pm} = \frac{Z_{\pm}}{Z_{+} + Z_{-}}$$

• typically
$$w_- \ll w_+$$

SU(3) effective one-link model

see also poster by Nucu Stamatescu at XQCD16

same structure observed in more realistic models

scatter plot of complex determinant

- model designed to understand heavy dense QCD
- pole pinches the distribution, even in $\mathbb C$
- separate analysis of pos/neg parts possible

Extend to more realistic models

analysis of determinant

- easy to extend to heavy dense QCD
- full QCD numerically more intensive

but same principle holds

- two disjunct distributions
- zero/pole acts as a bottle neck
- higher order of zero (larger n_p):
 - stronger drift towards and then away from pole
 - stronger pinching
 - typically better agreement with expected results

see next talk by Dénes Sexty and poster by Nucu Stamatescu at XQCD16

Summary

- **s** zero of order n_p $[\det D]^{n_p}$
- formal derivation revisited, meromorphic drift
- common features in all models
 - pole pinches the distribution
 - two disjunct regions
 - can be analysed separately
 - larger n_p typically yields better results
- not specific to simple models
- Re det D is relevant variable, accessible in (HD)QCD

see next talk by Dénes Sexty