Rho meson decay width in $\mathrm{SU}(2)$ gauge theories with 2 fundamental flavours.

Tadeusz Janowski, Vincent Drach, Claudio Pica
CP3-Origins
University of Southern Denmark
Lattice 2016, 28 Jul 2016

SU(2) with 2 fundamental flavours

See also the talk by V. Drach (Monday) and plenary by C. Pica See also [1402.0233].
Fundamental representation of $\mathrm{SU}(2)$ is pseudo-real \rightarrow we can construct a flavour multiplet

$$
Q=\left(\begin{array}{c}
u_{L} \\
d_{L} \\
-i \sigma^{2} C \bar{u}_{R}^{T} \\
-i \sigma^{2} C \bar{d}_{R}^{T}
\end{array}\right)
$$

which is symmetric under $\operatorname{SU}(4)$ flavour group (locally isomorphic to $\mathrm{SO}(6)$).

SU(2) with 2 fundamental flavours

The mass term can be written as

$$
\begin{aligned}
-m(\bar{u} u+\bar{d} d) & =\frac{m}{2} Q^{T}\left(-i \sigma^{2}\right) C E Q+\text { h.c. } \\
E & =\left(\begin{array}{cc}
0 & 1_{2} \\
-1_{2} & 0
\end{array}\right)
\end{aligned}
$$

The mass term breaks $S U(4)$ to the subgroup which leaves E invariant, i.e. $\mathrm{Sp}(4)$.
Even if the explicit mass term is not present, the symmetry is broken spontaneously by $\bar{u} u+\bar{d} d$ condensate [1109.3513]. In a 2-flavour theory this produces 5 Goldstone bosons ("pions").

The model contains a choice of inequivalent vacua. Of particular interest are Σ_{B} and Σ_{H}

	Σ_{B}	Σ_{H}
EW symmetry	unbroken	broken
model	composite Higgs	Technicolor
pions	$W^{ \pm}, Z, H+1$ extra	$W^{ \pm}, Z+2$ extra
Higgs	pion	scalar resonance

The vacuum can also be a superposition of the two:

$$
\Sigma_{0}=\cos \theta \Sigma_{B}+\sin \theta \Sigma_{H}
$$

Motivation for this work:

At high energies, vector boson scattering is equivalent to
Goldstone boson scattering. Studying $\pi \pi$ scattering in this model tells us about the resonance structure in vector boson scattering.

We want m_{ρ} and $g_{\rho \pi \pi}$ defined as

$$
\begin{equation*}
\mathcal{L}_{\text {eff }}=g_{\rho \pi \pi} \epsilon_{i j k} \rho^{i \mu} \pi^{j} \partial_{\mu} \pi^{k} \tag{1}
\end{equation*}
$$

In QCD $g_{\rho \pi \pi} \approx 6$. This need not be the case for this model.

[1405.4123]

$\rho \rightarrow \pi \pi$ kinematics

- Pions transform in the 5-dimensional representation of $\operatorname{Sp}(4)$ ($=$ fundamental representation of $\mathrm{SO}(5)$)
- Two-pion wavefunction can be in one of the following irreducible representations:
(1) Symmetric traceless $\pi^{i} \pi^{j}+\pi^{j} \pi^{i}-\frac{2}{5} \pi^{k} \pi^{k} \delta^{i j}$ - see [1412.4771]
(2) Antisymmetric $\pi^{i} \pi^{j}-\pi^{j} \pi^{i}$ - this presentation
(3) Trace $\delta^{i j} \pi^{k} \pi^{k}$ - in the future
- This is analogous to $\mathrm{I}=2,1$ and $0 \pi \pi$ scattering in QCD.
- Rho is a vector $(\mathrm{J}=1)$ resonance, so by angular momentum conservation, the two-pion state must be in a p-wave $(\mathrm{l}=1)$, which is parity odd.
- Because pions are spin-0 bosons, they can only be combined into an antisymmetric wavefunction if their momenta are different.

Resonance parameters can be extracted from two-pion phase shift. Two-pion state can be described in partial-wave basis as $|E, p, I, m\rangle$.
Below inelastic threshold ($4 m_{\pi}$) there is only one state contributing to the S-matrix, which can be written as:

$$
S=\left\langle E, p, I^{\prime}, m^{\prime} \mid E_{C M}, 0, I, m\right\rangle=\delta\left(E-E_{C M}\right) \delta(p) \delta_{\| \prime} \delta_{m m^{\prime}} e^{2 i \delta_{l}\left(E_{C M}\right)}
$$

This defines the phase shift $\delta_{l}\left(E_{C M}\right)$.
Phase shift can be calculated from the energy spectrum using Lüscher's approach.
The strategy is:
Spectrum \rightarrow phase shift $\rightarrow m_{\rho}$ and $g_{\rho \pi \pi}$

Moving frames

- In continuum, the angular momentum is conserved (rotational symmetry).
- On the lattice, this symmetry is broken \rightarrow mixing between partial waves.
- Phase shift is extracted in the centre-of-mass frame, so the symmetry depends on the frame of reference we're in:
(1) COM - O $(P=(0,0,0))$
(2) MF1 - $D_{4 h}(P=(0,0, p))$
(3) MF2 - $D_{2 h}(P=(p, p, 0))$
- $I=1$ representation reduces to
(1) $\mathrm{COM} T_{1}^{-}$
(2) MF1 $A_{2}^{-} \oplus E^{-}$
(3) MF2 $B_{1}^{-} \oplus B_{2}^{-} \oplus B_{3}^{-}$

Moving frames

Phase shift formula depends on the frame and the representation:

frame	representation	$\tan \delta_{1}$
COM	T_{1}^{-}	$\frac{\pi^{3 / 2} q}{Z_{00}\left(1 ; q^{2}\right)}$
MF1	A_{2}^{-}	$\frac{\pi^{3 / 2} q}{Z_{00}\left(1 ; q^{2}\right)+\frac{2}{\sqrt{5} q^{2}} Z_{20}}$
MF2	B_{1}^{-}	$\frac{\pi^{3 / 2} q}{Z_{00}\left(1 ; q^{2}\right)-\frac{1}{\sqrt{5 q^{2}}} Z_{20}+i \frac{\sqrt{3}}{\sqrt{10 q^{2}}}\left(Z_{\left.22\left(1 ; q^{2}\right)-Z_{2(-2)}\left(1 ; q^{2}\right)\right)}^{2}\right.}$
$Z_{l m}\left(s, q^{2}\right)=\sum_{n \in \mathbb{Z}^{3}} \frac{Y_{l m}(n)}{\left(q^{2}-n^{2}\right)^{s}}$		
$\tan \delta_{1}=\frac{g_{\rho \pi \pi}^{2}}{6 \pi} \frac{p^{3}}{E_{C M}\left(m_{\rho}^{2}-E_{C M}^{2}\right)}, p=\sqrt{E_{C M}^{2} / 4-m_{\pi}^{2}}$		

The correlation functions are given by

$$
C_{i j}(t) \equiv\langle 0| O_{i}^{\dagger}(t) O_{j}(0)|0\rangle=\sum_{n, m}\langle 0| O_{i}^{\dagger}|n\rangle\left(e^{-E_{n} t} \delta_{m n}\right)\langle m| O_{j}|0\rangle
$$

U and V are square matrices assuming higher-energy states don't contribute.
Then

$$
C_{i j}^{-1}\left(t_{0}\right) C_{j k}(t)=V_{i n}^{-1} \operatorname{diag}\left(e^{-E_{n}\left(t-t_{0}\right)}\right)_{n m} V_{m j}
$$

The spectrum can be extracted from the eigenvalues of $C^{-1}\left(t_{0}\right) C(t)$.

Interpolating operators

We use singlet representations - A_{2}^{-}in MF1 and B_{1}^{-}in MF2. We use the following two interpolating operators

$$
\begin{aligned}
& O_{1}(t)=\sum_{x, y} \bar{\psi}(x) \gamma^{5} \psi(x) \bar{\psi}(y) \gamma^{5} \psi(y) e^{i \mathbf{p} \cdot \mathbf{x}} \\
& O_{2}(t)=\sum_{x} \bar{\psi}(x)(\gamma \cdot \hat{p}) \psi(x) e^{i \mathbf{p} \cdot x}
\end{aligned}
$$

- $p=(0,0,1)$ in MF1 and $p=(1,1,0)$ in MF2
- $O_{1}(t)$ is by itself not in an irreducible representation, projection is done by choosing the contractions the same way as for $\pi_{i}(p) \pi_{j}(0)-\pi_{j}(p) \pi_{i}(0)$.

Quark sources

To achieve sources of the form $\sum_{x} \bar{\psi}(x) \Gamma \psi(x)$ we use propagator sources of the form

$$
\psi_{\eta}(p)=\sum_{x} \eta(x) \psi(x) e^{i p x}
$$

with

$$
\left\langle\eta(x)^{\dagger} \eta(y)\right\rangle_{\eta}=\delta(x-y)
$$

then

$$
\left\langle\bar{\psi}_{\eta}(0) \psi_{\eta}(p)\right\rangle_{\eta}=\sum_{x} \bar{\psi}(x) \Gamma \psi(x)
$$

Two-pion sources require separate noise vectors for each pion. We use $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ noise sources

$$
\eta(x)=\operatorname{rand}(\pm 1 \pm i)
$$

with 3 choices of η for each propagator ("hits").

Contractions

$c_{22}(t)=\mathbf{p} \longrightarrow \mathbf{p}$

Ensemble parameters

$$
\begin{aligned}
L^{3} T & =32^{4} \\
\text { configs } & =122 \\
\beta & =2.0 \\
a m_{0} & =-0.958 \\
a f_{\pi} & =0.049(3) \\
a m_{\pi} & =0.18(1) \\
a m_{\rho} & =0.38(5)
\end{aligned}
$$

Effective mass plots

Eigenvalue $\lambda_{i}(t)=\exp \left(-E_{i}\left(t-t_{0}\right)\right)$
Effective mass $E_{i}(t)=-\ln \lambda_{i}(t) /\left(t_{0}-t\right)$

Effective mass plots

Eigenvalue $\lambda_{i}(t)=\exp \left(-E_{i}\left(t-t_{0}\right)\right)$
Effective mass $E_{i}(t)=-\ln \lambda_{i}(t) /\left(t_{0}-t\right)$

Conclusions

First attempt at calculating ρ resonance mass and decay width in non-QCD theory.
Early results - one ensemble with possibly stable rho.
Future work:

- Include centre-of-mass frame to make the fit to M_{R} and $g_{\rho \pi \pi}$ more reliable
- Several quark masses \rightarrow chiral extrapolation
- Several lattice spacings \rightarrow continuum extrapolation

