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SU(2) with 2 fundamental flavours

See also the talk by V. Drach (Monday) and plenary by C. Pica
See also [1402.0233].

Fundamental representation of SU(2) is pseudo-real — we can
construct a flavour multiplet
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which is symmetric under SU(4) flavour group (locally isomorphic

to SO(6)).



SU(2) with 2 fundamental flavours

The mass term can be written as

—m(du + dd) = gQT(—ia2)CEQ + he.

(0 1
=(57)
The mass term breaks SU(4) to the subgroup which leaves E
invariant, i.e. Sp(4).
Even if the explicit mass term is not present, the symmetry is

broken spontaneously by @u 4 dd condensate [1109.3513]. In a
2-flavour theory this produces 5 Goldstone bosons ( “pions”).



Phenomenology

The model contains a choice of inequivalent vacua. Of particular
interest are X g and Xy

g 1y
EW symmetry unbroken broken
model composite Higgs Technicolor
pions W=*, Z, H + 1extra W%, Z + 2 extra
Higgs pion scalar resonance

The vacuum can also be a superposition of the two:
Yo =cosf¥Xpg+sinfry

Motivation for this work:

At high energies, vector boson scattering is equivalent to
Goldstone boson scattering. Studying w7 scattering in this model
tells us about the resonance structure in vector boson scattering.



Phenomenology

We want m, and g, defined as
Leff = gpﬂ'freijkpi'uﬂ-jauﬂ-k (1)

In QCD gyrr =~ 6. This need not be the case for this model.
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p — m kinematics

@ Pions transform in the 5-dimensional representation of Sp(4) (
= fundamental representation of SO(5))
@ Two-pion wavefunction can be in one of the following
irreducible representations:
© Symmetric traceless 7/ + win’ — 2wk kol - see [1412.4771]
Q@ Antisymmetric 7'/ — w/7’ - this presentation
© Trace 8¥nknk - in the future
@ This is analogous to =2, 1 and 0 7 scattering in QCD.

@ Rho is a vector (J=1) resonance, so by angular momentum
conservation, the two-pion state must be in a p-wave (I=1),
which is parity odd.

@ Because pions are spin-0 bosons, they can only be combined
into an antisymmetric wavefunction if their momenta are
different.



Phase shift

Resonance parameters can be extracted from two-pion phase shift.
Two-pion state can be described in partial-wave basis as

|E, p, I, m).

Below inelastic threshold (4m;) there is only one state
contributing to the S-matrix, which can be written as:

S={(E,p,I',m [Ecm,0,!,m) = 6(E — Ecm)6(p)S Sy € FM)

This defines the phase shift 0;(Ecp).

Phase shift can be calculated from the energy spectrum using
Lischer’s approach.

The strategy is:

Spectrum — phase shift — m, and gy~



@ In continuum, the angular momentum is conserved (rotational
symmetry).
@ On the lattice, this symmetry is broken — mixing between
partial waves.
@ Phase shift is extracted in the centre-of-mass frame, so the
symmetry depends on the frame of reference we're in:
Q@ COM- O (P =(0,0,0))
9 MF1 - D4h ('D = (0,07P))
Q MF2- Doy (P = (p,p,0))
@ | =1 representation reduces to
Q@ COM T
O MFL A, @ E-
O MF2 B @B, @ B;



Phase shift formula depends on the frame and the representation:

frame | representation tand;
COM T ol
1 Zoo(1;9?)
MF1 A- o
2 Zoo(l;qz)-i—f%qum
_ 732
MF2 B, 1 — . .
Zoo(1iq )*\quzZer’qu(Zﬂ(l;q )= Zx(—2)(1;6%))

Zin(s, ) = Z Yim(n)

neZ3 (q2 - n2)$

2 3
tan51:gp7r7r p 7P:\/E%M/4—m72r
6’/T Ecm(mg — E%IVI)




GEVP

The correlation functions are given by

Ci(t) = (010} (£)0;(0) [0) = 3 (0[O |n)(eE*bpmn)(m | O |0)

n,m

U and V are square matrices assuming higher-energy states don't
contribute.
Then

G5 () Gil) = Vi, diag (e 5(78)) v,

nm

The spectrum can be extracted from the eigenvalues of

C(to)C(2).
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Interpolating operators

We use singlet representations - A, in MF1 and By in MF2. We
use the following two interpolating operators

t)—Zw V()Y )y e (y)e™™
=Z¢ X)(7 - BYw(x)eP*
e p=(0,0,1) in MF1 and p = (1,1,0) in MF2

@ O1(t) is by itself not in an irreducible representation,

projection is done by choosing the contractions the same way
as for 7T,'(p)7Tj(0) — 7Tj(p)7T,'(0).
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Quark sources

To achieve sources of the form Y 4 (x)I(x) we use propagator
sources of the form

Ya(p) = Y n(x)(x)e™

with
(n(x)'n(y)m = 6(x — y)
then

(@ (0) ey (P))y = D B(x)Th(x)

Two-pion sources require separate noise vectors for each pion.
We use Z» X Z» noise sources

n(x) = rand (£1 £ /)

with 3 choices of 7 for each propagator ( “hits").
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< P P >0 0
Gii(t) = — +
0<>0 0<>p 0 p
P 0 P P P P
_|_ — —
0 P 0 o o )

13 /17



Ensemble parameters

137 =32¢
configs = 122
6=20
amg = —0.958
af; = 0.049(3)
am, = 0.18(1)

am, = 0.38(5)
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Effective mass plots

Eigenvalue \;(t) = exp (—Ei(t — tp))
Effective mass E;(t) = —In X\;(t)/(to — t)
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Effective mass plots

Eigenvalue \;(t) = exp (—Ei(t — tp))
Effective mass E;(t) = —In X\;(t)/(to — t)
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Conclusions

First attempt at calculating p resonance mass and decay width in
non-QCD theory.

Early results - one ensemble with possibly stable rho.

Future work:

@ Include centre-of-mass frame to make the fit to Mg and gy,
more reliable

@ Several quark masses — chiral extrapolation

o Several lattice spacings — continuum extrapolation
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