Stochastic approaches to extract spectral functions from Euclidean correlators

Hai-Tao Shu

Central China Normal University

in collaboration with H.-T. Ding, O. Kaczmarek, H. Ohno , S. Mukherjee

Lattice 2016 Southampton, UK, 28.07.2016

Outline

- Introduction & Motivation
- Two stochastic approaches
- Mock data tests
- Summary & Conclusion

Difficulties in extracting spectral functions

Spectral functions are crucial to understand inmedium hadron properties and transport properties of QGP.

 $J_H(\tau, \vec{x}) = \vec{q}(\tau, \vec{x}) \Gamma_H q(\tau, \vec{x})$ G(\(\tau, \vec{p}, T)\) = \(\sum_{\vec{x}}\) exp(-\(\text{i} \cdot \vec{p} \cdot \vec{x}\) \langle J_H(0,0) J_H^+(\text{i}, \vec{x}) \rangle \)

Relation between correlators and spectral functions:

Maximum Entropy Method(MEM)

Goal: obtain the most probable solution

$$P[\alpha|\bar{G}] = \frac{P[\alpha]}{P[\bar{G}]} \int \mathcal{D}\rho P[\bar{G}|\rho,\alpha] \cdot P[\rho|\alpha] \qquad \text{sharp-peak} \\ P[\bar{G}|\rho,\alpha] \sim \exp(-\chi^2[\rho]/2): \text{ likelihood function} \qquad \text{assumption} \\ P[\rho|\alpha] \sim \exp(\alpha S[\rho]): \text{ prior probability} \qquad \mininimize \ F = \frac{\chi^2}{2} - \alpha S \\ S[\rho] = \int d\omega \left[\rho(\omega) - D(\omega) - \rho(\omega) \ln \frac{\rho(\omega)}{D(\omega)} \right] \\ P[\rho|\alpha] = \int d\omega \left[\rho(\omega) - D(\omega) - \rho(\omega) \ln \frac{\rho(\omega)}{D(\omega)} \right]$$

[M. Jarrell, J. E. Gubernatis, Phy. Rep.269,133(1996)] [M. Asakawa et al., Prog.Part.Nucl.Phys. 46(2001) 459-508]

A novel Bayesian approach New axiom: requirement of **smoothness** of the reconstructed spectra with constant default model. [Y. Burnier, A. Rothkopf, Phys. Rev. Lett. 111, 182003 (2013)] $\Rightarrow S = \alpha \int d\omega (1 - \frac{\rho}{m} + \ln \frac{\rho}{m})$ □ The Backus-Gilbert method(BGM) Manipulate in the **local vicinity** of some ω in a **model** independent way. [B. B. Brandt, A. Francis, B. Jaeger, H. B. Meyer, Phys. Rev. D 93, 054510 (2016)] Filtered spectral function: $\hat{\rho}(\omega) = f(\omega/T) \cdot \sum g_i(\omega, [W^{-1}]^{reg}, R) \cdot G(\tau_i)$ $[W^{-1}]_{ii}^{reg}(\omega) = \lambda W_{ij}(\omega) + (1 - \lambda) Cov_{ij},$ $0 \leq \lambda \leq 1$ Contribution of local vicinity enters ! $W_{ii} = \int d\omega' K(\tau_i, \omega') K(\tau_i, \omega') (\omega - \omega')^2$

Stochastic Analytic Inference(SAI)

- A stochastic method based on Bayesian theorem : $\langle n \rangle = \int d\alpha \, \langle n \rangle_{\alpha} \, P[\alpha | \overline{G}]$

[H. Ohno, PoS(LATTICE 2015)175]

Goal: find the distribution of $P[\alpha | \overline{G}]$

Field treatment of n(x) gives: $\langle n \rangle_{\alpha} = \int \mathcal{D}n \, n \, P[n|\alpha, \overline{G}] = \int \mathcal{D}n \, n \, \frac{1}{Z(\alpha)} e^{-\chi^2/2\alpha}$ Posterior probability: $P[n|\alpha, \overline{G}] = \frac{1}{P[\overline{G}|\alpha]} P[\overline{G}|\alpha, n] P[n|\alpha]$ $\begin{cases} P[\overline{G}|\alpha, n] = \frac{1}{Z'} e^{-\chi^2[n]/2\alpha}, \text{likelihood function} \\ P[n|\alpha] = \Theta(n)\delta \left(\int_{0}^{x_{max}} dx \, n(x) - 1 \right), \text{ prior probability} \\ P[\overline{G}|\alpha] = Z/Z', \text{ normalization factor} \end{cases}$

 $\geq P[\alpha|\bar{G}] = \frac{P[\alpha]}{P[\bar{G}]} \int \mathcal{D}n \ P[\bar{G}|\alpha, n] P[n|\alpha] \sim P[\alpha] \alpha^{-\frac{N}{2}} Z(\alpha)$

Stochastic Analytic Inference

> Density of States(DoS): $\Omega(E) = \int \mathcal{D}n \,\delta(\chi^2[n]/2 - E)$ > $P[\alpha|\bar{G}] = P[\alpha]\alpha^{-\frac{N}{2}} \int dE \Omega(E)e^{-E/\alpha}$

F.-G. Wang, D.P. Landau arXiv:cond-mat/0107006

SAI v.s. MEM

	SAI	MEM
Average	$\langle n \rangle = \int d\alpha P[\alpha \bar{G}] \langle n \rangle_{\alpha}$	$\langle \rho \rangle \approx \int d\alpha P[\alpha \bar{G}] \hat{\rho}_{\alpha}$
Likelihood function	$P[\bar{G} \alpha,n] \sim e^{-\chi^2[n]/2\alpha}$	$P[\bar{G} \alpha,\rho] \sim e^{-\chi^2[\rho]/2}$
Prior probability	$P[n \alpha] = \Theta(n)\delta(\sum n(x) - 1)$	$P[\rho \alpha] \sim \exp(\alpha S[\rho])$
$P[\alpha \overline{G}]$	Integrate ∫ Dn	Minimize F = $\frac{\chi^2}{2} - \alpha S$

SAI to MEM

■ Mean-field treatment in SAI: $S_{SAI}[n] \equiv \int \mathcal{D}n \ln \Omega(n)$ $\approx \ln \Omega(\bar{n})$ $= -\int_{0}^{1} dx \, \bar{n}(x) \ln \bar{n}(x)$ $= -\int d\phi \frac{\bar{p}}{D} \ln \frac{\bar{p}}{D}$ $= S_{MEM}[\bar{p}]$ ■ SAI reduces to MEM at the mean-field level !

Stochastic Optimization Method(SOM)

1e14

d²log(E)/d²log

[H.-T. Shu, H.-T. Ding, O. Kaczmarek, S. Mukherjee, H. Ohno, PoS(LATTICE 2015)180]

 Based on Central Limit Theorem.
 No prior information is needed. All information comes from correlators:

 $E = \chi^2[\rho]/2$ (Fictitious energy)

- > Field treatment of ρ . Evolves with fictitious temperature α .
- Possible solution obtained when phase transition occurs.

[K.S.D. Beach arXiv:cond-mat/0403055]

ł²log(E)/d²log(α)

Phase transition occurs at the *kink(black spot)*.

SAI to SOM

SAI solves to SOM when using **constant default model**! $x = \omega, n(x) = \rho(\omega)$

Basis of Stochastic approaches

SOM

Mock data test:Different spectral functions

- 1. MEM gives fake resonance peaks.
- 2. SOM gives similar results to SAI with constant DM.
- 3. SAI&SOM reconstruct the input well.

Mock data test:Different spectral functions

1. MEM&SAI with constant DM and SOM can not reconstruct the transport peak precisely.

2. MEM&SAI&SOM reconstruct the resonance peak, but the width and peaklocation differ from the input.

- 3. MEM generates waggles in continuum part.
- 4. SAI&SOM can reconstruct the continuum part well.

1. MEM reconstructs the resonance peak well even at small N_{τ} . 2. SAI&SOM give fake transport peak at small N_{τ} .

3. SAI&SOM reconstruct the continuum part well.

4. As N_{τ} increases, the output approaches to the input for all methods.

Mock data test:Dependence on noise level

 MEM gives bad output with noisy data.
 SAI&SOM give a rough resonance peak with noisy data.

3. SAI&SOM reconstruct the continuum part well.

4. As noise becomes weak, the output approaches to the input for all methods.

1. Dependence is weak for resonance peak and continuum.

2. There is dependence for transport peak. But upper bound exists in this case.

Summary & Outlook

- SOM&SAI are introduced to study the uncertainties of spectral functions besides MEM.
- SAI is a generalization of MEM and reduces to MEM in mean field limit. SAI reduces to SOM when using constant default model.
- From mock data tests, we found SAI&SOM work well for resonance peaks and continuum parts.
- For small transport peak, we need check the dependence on DM carefully.
- Apply SOM&SAI into real lattice data to investigate in-medium hadron properties.
 - [Dr. Hiroshi OHNO on 28 Jul 2016 at 15:00]

BACKUP PAGES

α

BACKUP PAGES Mock SPFs

$$\geq \text{Resonance peak} : \rho_{res} = c_{res} \frac{\Gamma(\omega, \omega_0, \gamma_0)M}{(\omega^2 - M^2)^2 + M^2 \Gamma^2(\omega, \omega_0, \gamma_0)} \frac{\omega^2}{\pi}$$

$$\text{Where } \Gamma(\omega, \omega_0, \gamma_0) = \theta(\omega - \omega_0)\gamma_0(1 - \frac{\omega^2_0}{\omega^2})^5$$

Transport peak:

$$\rho_{trans} = c_{trans} \frac{\eta \omega}{(\omega^2 - \eta^2)^2}$$

Free continuum:

$$\rho_{cont} = c_{cont} \frac{N_c}{8\pi^2} \Theta(\omega^2 - 4m^2)\omega^2 \tanh\left(\frac{\omega}{4T}\right) \\ \times \sqrt{1 - \left(\frac{2m}{\omega}\right)^2} \left[a^1 + a^2\left(\frac{2m}{\omega}\right)^2\right]$$

Free Wilson:

$$\rho_{Wilson} = c_{Wilson} \frac{N}{L^3} \sum_k \sinh\left(\frac{\omega}{2T}\right) \left[b^1 - b^2 \frac{\left(\sum_{i=1}^3 \sin^2 k_i\right)}{\sinh^2 E_k(m)}\right]$$

Where $\cosh E_k(m) = 1 + \frac{K_k^2 + M_k^2(m)}{2(1+M_k(m))}$, $K_k = \sum_{i=1}^3 \gamma_i \sinh k_i$

BACKUP PAGES Mock SPFs parameters

Elements in SPF	Parameters
$ ho_{res}^1$	$c_{res} = 1, \omega_0 = 0.2, \gamma_0 = 0.20, M = 0.5$
$ ho_{res}^2$	$c_{res} = 4, \omega_0 = 0.2, \gamma_0 = 0.25, M = 1.2$
$ ho_{res}^3$	$c_{res} = 6, \omega_0 = 0.2, \gamma_0 = 0.20, M = 2.5$
ρ _{trans}	$c_{trans} = 0.2, \eta = 0.01$
ρ _{cont}	$c_{cont} = 20, a^1 = 2, a^2 = 1, m = 0.1$
<i>ρ</i> wilson	$c_{Wilson} = 1, b^1 = 3, b^2 = 1, m = 0.112$

 $N_{\tau} = 48, a = 1, \tau_{min} = 1, \omega \in [0,4].$ Error in mock data: $\sigma(\tau) = \epsilon G(\tau)\tau$