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Spectral functions are crucial to understand in-
medium hadron properties and transport 
properties of QGP. 

Difficulties in extracting spectral functions 

𝐽𝐻 𝜏, 𝑥 = 𝑞 𝜏, 𝑥 𝛤𝐻𝑞 𝜏, 𝑥                                        

G(𝜏,𝑝 , 𝑇)= exp (−𝑖 ⋅ 𝑝 ⋅ 𝑥 ) 𝐽𝐻(0,0)𝐽𝐻
+(𝜏, 𝑥 )𝑥  

𝑞 𝜏, 𝑥  
    𝛤𝐻 
𝑞 (𝜏, 𝑥 )    

𝑞 0,0  
    𝛤𝐻 
q(0,0)    
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𝝌𝟐 fitting fails without prior information 
Discretized 
~O(10) 

Continuous 
>=O(𝟏𝟎𝟑 ) 

Relation between correlators and spectral functions: 



 A method based on Bayesian theorem: 

     𝜌 = ∫ 𝑑𝛼𝑃 𝛼 𝐺 ∫ 𝓓𝝆 𝑷 𝝆 𝑮 , 𝜶 𝝆 
            ≈ ∫ 𝑑𝛼 𝑃 𝛼 𝐺 𝝆 𝜶 (sharp-peak assumption) 
 
  

 𝑃 𝛼 𝐺 =
𝑃 𝛼

𝑃 𝐺 
∫ 𝒟𝜌𝑃 𝐺 𝜌, 𝛼 ⋅ 𝑃[𝜌|𝛼] 

     𝑃 𝐺 𝜌, 𝛼 ~exp (−𝜒2[𝜌]/2): likelihood function 
     𝑃 𝜌 𝛼 ~exp (𝛼𝑆[𝜌]): prior probability 
 Shanon-Jaynes entropy: 

      𝑆 𝜌 = ∫ 𝑑𝜔 𝜌 𝜔 − 𝐷 𝜔 − 𝜌 𝜔 ln
𝜌 𝜔

𝐷 𝜔
 

 Default Model 𝐷 𝜔 : parameter needed as input  

minimize 𝐹 =
𝜒2

2
− 𝛼𝑆 

sharp-peak 
assumption 

Maximum Entropy Method(MEM) 
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Goal: obtain the most probable solution 

[M. Jarrell, J. E. Gubernatis, Phy. Rep.269,133(1996)]  
[M. Asakawa et al.,  Prog.Part.Nucl.Phys. 46(2001) 459-508] 



Recent developed new methods 
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 A novel Bayesian approach 
New axiom: requirement of smoothness of the reconstructed 
spectra with constant default model. 

⟹ 𝑆 = 𝛼∫ 𝑑𝜔(1 −
𝜌

𝑚
+ ln

𝜌

𝑚
) 

  The Backus-Gilbert method(BGM) 
Manipulate in the local vicinity of some 𝜔 in a model 
independent way. 
Filtered spectral function:  
𝜌 𝜔 = 𝑓 𝜔/𝑇 ⋅  𝑔𝑖 𝜔, 𝑊

−1 𝑟𝑒𝑔, 𝑅 ⋅ 𝐺 𝜏𝑖  

𝑊−1
𝑖𝑗
𝑟𝑒𝑔

𝜔 = 𝜆𝑊𝑖𝑗 𝜔 + 1 − 𝜆 𝐶𝑜𝑣𝑖𝑗 , 0 ≤ 𝜆 ≤ 1 

 
 

𝑊𝑖𝑗 = ∫ 𝑑𝜔′𝐾 𝜏𝑖 , 𝜔
′ 𝐾 𝜏𝑗 , 𝜔

′ 𝜔 − 𝜔′ 2 

Contribution of local vicinity enters ! 

[Y. Burnier, A. Rothkopf,  
Phys. Rev. Lett. 111, 182003 (2013)] 

[B. B. Brandt, A. Francis, B. Jaeger, H. B.   Meyer,   
Phys. Rev. D 93, 054510 (2016)] 



 A stochastic method based on Bayesian theorem :  
      𝑛 = ∫𝑑𝛼 𝑛 𝛼 𝑃[𝛼|𝐺 ]   

  𝑛 𝑥 =
𝜌 𝜔

𝐷 𝜔
,       𝑥 ≡ 𝜙 𝜔 = ∫ 𝐷(𝜈)𝑑𝜈

𝜔

0
 

 
 
 Field treatment of 𝑛 𝑥  gives: 

      𝑛 𝛼 = ∫𝒟𝑛 𝑛 𝑷[𝒏|𝜶, 𝑮 ] = ∫𝒟𝑛 𝑛
𝟏

𝒁(𝜶)
𝒆−𝝌

𝟐/𝟐𝜶 

 Posterior probability: 𝑃 𝑛 𝛼, 𝐺 =
1

𝑃[𝐺 |𝛼] 
𝑃 𝐺 𝛼, 𝑛 𝑃 𝑛 𝛼  

 
 
 
 
 

 𝑃[𝛼|𝐺 ] =
𝑃[𝛼]

𝑃[𝐺 ]
 ∫𝒟𝑛  𝑃 𝐺 𝛼, 𝑛 𝑃[𝑛|𝛼] ~𝑃 𝛼 𝛼−

𝑁

2𝑍 𝛼  

Stochastic Analytic Inference(SAI) 
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Goal: find the distribution of 𝑃 𝛼 𝐺   

𝑃 𝐺 𝛼, 𝑛 =
1

𝑍′
𝑒−𝜒

2[𝑛]/2𝛼 , likelihood function                     

𝑃 𝑛 𝛼 = Ѳ 𝑛 𝛿  𝑑𝑥 𝑛 𝑥
𝑥𝑚𝑎𝑥

0

− 1 ,prior probability

𝑃 𝐺 𝛼 = 𝑍/𝑍′, normalization factor                             

 ⟹ 

 

[H. Ohno, PoS(LATTICE 2015)175] 



Stochastic Analytic Inference 

7 

 Density of States(DoS):  Ω 𝐸 = ∫𝒟𝑛 𝛿(𝜒2[𝑛]/2 − 𝐸)  

 𝑃[𝛼|𝐺 ] = 𝑃 𝛼 𝛼−
𝑁

2 ∫𝑑𝐸Ω 𝐸 𝑒−𝐸/𝛼 
      F.-G. Wang, D.P. Landau arXiv:cond-mat/0107006 

Density of States.  𝑃 𝛼 𝐺 . 



SAI v.s. MEM 
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SAI MEM 

Average 𝑛 = ∫ 𝑑𝛼 𝑃 𝛼 𝐺 〈𝑛〉𝛼 𝜌 ≈ ∫ 𝑑𝛼 𝑃 𝛼 𝐺 𝜌 𝛼 

Likelihood 

function 
𝑃 𝐺 𝛼, 𝑛 ~𝑒−𝜒

2[𝑛]/2𝛼 𝑃 𝐺 𝛼, 𝜌 ~𝑒−𝜒
2[𝜌]/2 

Prior 

probability 
𝑃[𝑛|𝛼] = Ѳ(𝑛)𝛿( 𝑛(𝑥) − 1) 
 

𝑃 𝜌 𝛼 ~exp (𝛼𝑆[𝜌]) 

𝑃 𝛼 𝐺  Integrate ∫𝒟𝑛 Minimize F =
𝜒2

2
− 𝛼𝑆 

 Mean-field treatment in SAI:  

  𝑆𝑆𝐴𝐼[𝑛] ≡ ∫ 𝒟𝑛 lnΩ(𝑛) 
                 ≈ lnΩ(𝑛 ) 

                 = −∫ 𝑑𝑥 𝑛 𝑥 ln 𝑛 𝑥
1

0
 

                 = −∫ 𝑑𝜙
𝜌 

𝐷
ln

𝜌

𝐷

  

                 = 𝑆𝑀𝐸𝑀[𝜌 ] 
 SAI reduces to MEM at the mean-field level ! 

SAI to MEM 



Stochastic Optimization Method(SOM) 
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 Based on Central Limit Theorem. 
 No prior information is needed.  
     All information comes from 
correlators: 
     𝐸 = 𝜒2[𝜌]/2 (Fictitious energy) 
 Field treatment of 𝜌. Evolves with  

fictitious temperature 𝛼. 
 Possible solution obtained when 

phase transition occurs. 
     [K.S.D. Beach arXiv:cond-mat/0403055] 

 SAI reduces to SOM when using constant default model! 
     𝑥 = 𝜔, 𝑛 𝑥 = 𝜌(𝜔) 

 [H.-T. Shu, H.-T. Ding, O. Kaczmarek, S. Mukherjee, H. Ohno, PoS(LATTICE 2015)180 ] 

SAI to SOM 

Phase transition occurs at the 
kink(black spot). 



Basis of Stochastic approaches 
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 Ingredients: boxes  
 
ρ ω =  ηK

t (Pt)(ω),  

 η(Pt) ω =  
ht, ω ∊ [ct − wt 2, ct +wt 2,  ]
0, otherwise                                

 

 
 
 
 Elementary updates 

 
 
 
 
1.Shift              2. Change width  3. Change heights 

 Normalization 
      ℎ𝑖𝑤𝑖 = 𝐺 (𝜏0) 

𝜌(𝜔) 

𝜔 

𝜌(𝜔) 

𝜔 

𝜌(𝜔) 

𝜔 

𝜌(𝜔) 

𝜔 

 Ingredients: 𝛿 functions 
 
ρ ω =  𝑟𝑖𝛿(𝜔 − 𝑎𝑖)

K
t ,  

 

 
 
 
 
 Elementary updates 

 
 
 
 
1.Shift                    2. Change residues 

 Normalization 
      𝑟𝑖 = 𝐺 (𝜏0) 

𝜌(𝜔) 

𝜔 

𝜌(𝜔) 

𝜔 

𝜌(𝜔) 

𝜔 

SAI SOM 



Mock data test:Different spectral functions 
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1. MEM gives fake resonance peaks. 
2. SOM gives similar results to SAI with constant DM. 
3. SAI&SOM reconstruct the input well.  

𝜌 𝜔 = 𝜌𝑟𝑒𝑠 + 𝜌𝑐𝑜𝑛𝑡,  
corresponding to 𝑇 < 𝑇𝑐    
Error in mock data:  
𝜎 𝜏 = 𝜖𝐺 𝜏 𝜏 
N𝜏 = 48, 𝜖 = 10−4 
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𝜌 𝜔 = 𝜌𝑡𝑟𝑎𝑛𝑠 + 𝜌𝑟𝑒𝑠 + 𝜌𝑐𝑜𝑛𝑡, 
corresponding to 𝑇 > 𝑇𝑐    
N𝜏 = 48, 𝜖 = 10−4 

Mock data test:Different spectral functions 

1. MEM&SAI with constant DM  and SOM can not reconstruct the transport 
peak precisely. 
2. MEM&SAI&SOM reconstruct the resonance peak, but the width and peak-
location  differ from the input. 
3. MEM generates waggles  in continuum part. 
4. SAI&SOM can reconstruct  the continuum part well.  



Mock data test:Dependence on 𝑵𝝉 
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1. MEM reconstructs the resonance 
peak well even at small Nτ. 
2. SAI&SOM give fake transport peak 
at small Nτ . 
3. SAI&SOM reconstruct the 
continuum part well. 
4. As Nτ increases,  the output 
approaches  to the input for all 
methods. 



Mock data test:Dependence on noise level 
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1. MEM gives bad output with noisy data.  
2. SAI&SOM give a rough resonance peak 
with noisy data. 
3. SAI&SOM reconstruct the continuum 
part well. 
4. As noise becomes weak,  the output 
approaches  to the input for all methods. 
 



Mock data test:Dependence on 𝑫𝑴 
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N𝜏 = 48, 𝜖 = 10−4  for all. 

1. Dependence is weak for resonance peak and continuum.  
2. There is dependence for transport peak. But upper bound exists in this case.  



Summary & Outlook 

 SOM&SAI are introduced to study the uncertainties 
of spectral functions besides MEM. 

 SAI is a generalization of MEM and reduces to MEM 
in mean field limit. SAI reduces to SOM when using 
constant default model. 

 From mock data tests, we found SAI&SOM  work 
well for resonance peaks and continuum parts. 

 For small transport peak, we need check the 
dependence on DM carefully. 

 Apply SOM&SAI into real lattice data to investigate 
in-medium hadron properties.  

    [Dr. Hiroshi OHNO on 28 Jul 2016 at 15:00] 
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BACKUP PAGES 

17 



BACKUP PAGES 

Mock SPFs 
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 Resonance peak : 𝜌𝑟𝑒𝑠 = 𝑐𝑟𝑒𝑠
𝛤 𝜔,𝜔0,𝛾0 𝑀

(𝜔2−𝑀2)2+𝑀2𝛤2 𝜔,𝜔0,𝛾0
 
𝜔2

𝜋
 

      Where 𝛤 𝜔,𝜔0, 𝛾0 = 𝜃(𝜔 − 𝜔0)𝛾0(1 −
𝜔2

0

𝜔2 )
5 

 Transport peak: 

     𝜌𝑡𝑟𝑎𝑛𝑠 = 𝑐𝑡𝑟𝑎𝑛𝑠
𝜂𝜔

(𝜔2−𝜂2)2
 

 Free continuum: 

     𝜌𝑐𝑜𝑛𝑡 = 𝑐𝑐𝑜𝑛𝑡
𝑁𝑐

8𝜋2
Θ 𝜔2 − 4𝑚2 𝜔2 tanh

𝜔

4𝑇
 

× 1 −
2𝑚

𝜔

2

[𝑎1 + 𝑎2
2𝑚

𝜔

2

] 

 Free Wilson: 

      𝜌𝑊𝑖𝑙𝑠𝑜𝑛 = 𝑐𝑊𝑖𝑙𝑠𝑜𝑛
𝑁

𝐿3
 sinh

𝜔

2𝑇
[𝑏1 − 𝑏2

 sin2 𝑘𝑖
3
𝑖=1

sinh2 𝐸𝑘 𝑚
 ]𝑘  

     Where cosh 𝐸𝑘 𝑚 = 1 +
𝐾𝑘
2+𝑀𝑘

2 𝑚

2 1+𝑀𝑘 𝑚
 , 𝐾𝑘 =  𝛾𝑖 sinh 𝑘𝑖

3
𝑖=1   



BACKUP PAGES 

Mock SPFs parameters 
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Elements in SPF Parameters 

𝜌𝑟𝑒𝑠
1  𝑐𝑟𝑒𝑠 = 1,𝜔0 = 0.2, 𝛾0 = 0.20,𝑀 = 0.5 

𝜌𝑟𝑒𝑠
2  𝑐𝑟𝑒𝑠 = 4,𝜔0 = 0.2, 𝛾0 = 0.25,𝑀 = 1.2 

𝜌𝑟𝑒𝑠
3  𝑐𝑟𝑒𝑠 = 6,𝜔0 = 0.2, 𝛾0 = 0.20,𝑀 = 2.5 

 

𝜌𝑡𝑟𝑎𝑛𝑠 c𝑡𝑟𝑎𝑛𝑠 = 0.2, 𝜂 = 0.01 

𝜌𝑐𝑜𝑛𝑡 𝑐𝑐𝑜𝑛𝑡 = 20, 𝑎1 = 2, 𝑎2 = 1,𝑚 = 0.1 

𝜌𝑊𝑖𝑙𝑠𝑜𝑛 𝑐𝑊𝑖𝑙𝑠𝑜𝑛 = 1, 𝑏1 = 3, 𝑏2 = 1,𝑚 = 0.112 

N𝜏 = 48, 𝑎 = 1, 𝜏𝑚𝑖𝑛 = 1,𝜔 ∈ 0,4 .  
Error in mock data: 𝜎 𝜏 = 𝜖𝐺 𝜏 𝜏 


