Reweighting trajectories from the complex Langevin method

Jacques Bloch, Johannes Meisinger, Sebastian Schmalzbauer

University of Regensburg

Lattice 2016 25 – 29 July 2016 Southampton, UK

Introduction

- QCD at $\mu \neq 0$: det $(D) \in \mathbb{C} \rightarrow$ sign problem.
- Most solutions: computational cost grows ∝ exp(V)
 → restricted to µ/T < 1.
- Possible alternative: complex Langevin method.
- Recent investigations in heavy-dense QCD (Sexty et al., 2013) and full QCD (Fodor et al., 2015): method breaks down in transition region.
- Problems confirmed for low-dimensional strong-coupling QCD (Bloch et al., 2015): method converges to wrong values for small masses.
- New idea: combine CL method and reweighting of complex trajectory
 → reweighted complex Langevin (RCL) method.
- Reach regions of parameter space that are not simulated correctly by the CL method.

Complex Langevin Method

• Assume partition function

$$Z = \int dx \, e^{-S(x)}$$

with real degrees of freedom x and complex action S(x).

 Langevin equation with complex action: real variables driven into complex plane. So, x → z = x + iy satisfying the CL equation

$$\dot{z}(t) = -\frac{\partial S}{\partial z} + \eta(t)$$

• Stochastic Euler discretization:

$$z(t+1) = z(t) + \epsilon K + \sqrt{\epsilon} \eta,$$

with drift $K = -\partial S / \partial z$, step size ϵ and independent Gaussian noise η (chosen real for better convergence) with mean 0 and variance 2.

Validity of CL method

- Do CL equations give correct expectation values?
- If action *S* and observable *O* holomorphic in complexified variables (up to singularities):

Equivalence identity $\langle \mathcal{O} \rangle \equiv \frac{1}{Z} \int dx \, w(x) \mathcal{O}(x) = \int dx \, dy \, P(x+iy) \mathcal{O}(x+iy)$

- $w(x) \equiv e^{-S(x)}$ with complex action S(x) in the real variables x,
- P(z) is real probability of complexified variables z along CL trajectories.
- Validity conditions:
 - *P*(*z*) suppressed close to singularities of drift and observable;
 - Sufficiently rapid decay of *P*(*z*) in the imaginary direction;
- CL validity conditions satisfied for some parameter values but not for others → in latter case the CL method will fail.
- For QCD this depends on μ , m, β and lattice size.

Reweighted complex Langevin (RCL)

Aim

Extend applicability of CL method to parameter regions for which validity conditions are not satisfied.

Principle

- Generate CL trajectory for parameter values where CL is correct
- Reweight this complex trajectory to compute observables for other parameter values where CL could be wrong.

Advantage

Reweighting from $\mu \neq 0$: auxiliary ensemble closer to target ensemble than in traditional reweighting.

Reweighting the CL trajectories

- Consider target ensemble with parameters $\xi = (\mu, m, \beta)$ and auxiliary ensemble with parameters $\xi_0 = (\mu_0, m_0, \beta_0)$
- Reweight from auxiliary ensemble with parameters ξ₀ to target ensemble with parameters ξ:

$$\langle \mathcal{O} \rangle_{\xi} = \frac{\int dx \, w(x;\xi) \mathcal{O}(x;\xi)}{\int dx \, w(x;\xi)} = \frac{\int dx \, w(x;\xi_0) \left[\frac{w(x;\xi)}{w(x;\xi_0)} \mathcal{O}(x;\xi) \right]}{\int dx \, w(x;\xi_0) \left[\frac{w(x;\xi)}{w(x;\xi_0)} \right]}$$
$$= \frac{\left\langle \frac{w(x;\xi)}{w(x;\xi_0)} \mathcal{O}(x;\xi) \right\rangle_{\xi_0}}{\left\langle \frac{w(x;\xi)}{w(x;\xi_0)} \right\rangle_{\xi_0}}$$

• $w(x; \xi_0)$ is complex \rightarrow no importance sampling \rightarrow use CL

Reweighting the CL trajectories

• If CL method is valid for parameters ξ_0 , the CL equivalence says

$$\langle \mathcal{O} \rangle_{\xi_0} \equiv \frac{\int dx \, w(x;\xi_0) \mathcal{O}(x;\xi_0)}{\int dx \, w(x;\xi_0)} = \int dx dy \, P(z;\xi_0) \mathcal{O}(z;\xi_0)$$

where:

- $w(x, \xi_0) \equiv e^{-S(x;\xi_0)}$ with complex action $S(x;\xi_0)$ in the real variables x.
- $P(z; \xi_0)$ is real probability of complexified variable z along CL trajectory.
- Apply the CL equivalence to both (···)_{ξ0} in reweighting formula:

RCL equation

$$\langle \mathcal{O} \rangle_{\xi} = \frac{\int dx dy P(z; \xi_0) \left[\frac{w(z; \xi)}{w(z; \xi_0)} \mathcal{O}(z; \xi) \right]}{\int dx dy P(z; \xi_0) \left[\frac{w(z; \xi)}{w(z; \xi_0)} \right]}$$

- $\rightarrow \langle \mathcal{O} \rangle_{\xi}$ in target ensemble is ratio of expressions evaluated along CL trajectory in the auxiliary ensemble.
- Does this reweighting along the complex trajectory work correctly?

Features of RCL

- Both $w(z_j; \xi)$ and $w(z_j; \xi_0)$ are complex.
- RCL based on fact that the effective observables are correctly evaluated in auxiliary ensemble when using a valid CL trajectory.
- Application to finite discretized CL trajectory:

$$\langle \mathcal{O} \rangle_{\xi} \approx \frac{\frac{1}{N} \sum_{j=1}^{N} \frac{w(z_j;\xi)}{w(z_j;\xi_0)} \mathcal{O}(z_j;\xi)}{\frac{1}{N} \sum_{j=1}^{N} \frac{w(z_j;\xi)}{w(z_j;\xi_0)}}$$

where z_i are complex configurations of CL trajectory at ξ_0 .

• Note: reweighting factor cancels observable singularities in target ensemble explicitly.

Applied to:

- Random matrix model for QCD (Osborn, 2004)
- QCD in 1+1 dimensions (Bloch et al., 2015)

QCD - partition function

• Partition function of lattice QCD:

$$Z = \left[\prod_{x=1}^{V} \prod_{\nu=0}^{d-1} \int dU_{x,\nu}\right] \exp[-S_g] \det D(m;\mu)$$

with SU(3) matrices $U_{x,\nu}$.

- S_g: Wilson gauge action
- D: staggered Dirac operator for quark of mass m at chemical potential μ
- For $\mu \neq 0$: det $(D) \in \mathbb{C} \rightarrow$ complex action and sign problem.

Complex Langevin and gauge cooling for QCD

- CL equations drive $U_{x,\nu}$ from SU(3) \rightarrow SL(3, \mathbb{C}).
- CL method invalid when complex trajectories wander off too far in the imaginary direction of the complexified variables.
- Gauge theories: problem resolved with gauge cooling (Seiler et al., 2012)
 → keep trajectories as close as possible to SU(3).
- Gauge cooling alters CL trajectories: validity conditions of CL *can* be restored, BUT no guarantee to achieve this for all parameter values.
- Validity of CL method in 1+1-dim strong-coupling QCD (Bloch et al., 2015):
 - Gauge cooling \rightarrow valid results for some parameter range (m, μ) .
 - At small masses: P(z) not sufficiently suppressed for singularity of drift and observables at det(D) = 0 → CL method gives wrong results.
- Investigate RCL in these cases.

2dQCD: Reweighting in m for 4×4 lattice

- 4×4 lattice at $\beta = 0, \mu = 0.3$: mild sign problem
- CL with gauge cooling: wrong for small masses $(m \lesssim 0.2)$

2dQCD: Reweighting in m for 4×4 lattice

- 4×4 lattice at $\beta = 0, \mu = 0.3$: mild sign problem
- CL with gauge cooling: wrong for small masses ($m \lesssim 0.2$)
- Apply RCL method: auxiliary ensemble at m = 0.4, $\mu = 0.3$.
- RCL in mass works over complete mass range.

2dQCD: Reweighting in m for 6×6 lattice

- 6×6 lattice at $\beta = 0, \mu = 0.3$: stronger sign problem
- Again, CL with gauge cooling: wrong for small masses ($m \lesssim 0.2$)

2dQCD: Reweighting in m for 6×6 lattice

- 6×6 lattice at $\beta = 0, \mu = 0.3$: stronger sign problem
- Again, CL with gauge cooling: wrong for small masses ($m \lesssim 0.2$)
- Apply RCL method: auxiliary ensemble at m = 0.4, $\mu = 0.3$.
- RCL works down to $m \approx 0.05$.

$2dQCD - Reweighting in \mu at \beta = 0$

Jacques Bloch

Reweighting trajectories from the complex Langevin method

2dQCD – Reweighting in $\beta - 4 \times 4 - \mu = 0.3$

- Leaving the strong-coupling limit: Σ versus β
- At m = 0.3: CL agrees with benchmark (phase-quenched reweighting) At m = 0.1: CL only agrees at large β (> 8)

2dQCD – Reweighting in $\beta - 4 \times 4 - \mu = 0.3$

- Leaving the strong-coupling limit: Σ versus β
- At m = 0.3: CL agrees with benchmark (phase-quenched reweighting) At m = 0.1: CL only agrees at large β (> 8)
- However, RCL only brings little improvement

- RCL has usual overlap/sign problem, but could be less severe than with phase-quenched or Glasgow reweighting, because auxiliary ensemble is *closer* to target ensemble.
 - **(**) Glasgow reweighting: $\mu_0 = 0$. RCL from $\mu_0 \neq 0$: auxiliary closer to target.
 - Phase-quenched reweighting: w₀ = |det(D)|. Auxiliary and target are in different phases for μ > m_π/2: → little overlap between relevant configurations. RCL from μ ≠ 0: auxiliary and target both taken in full QCD.
- RCL can use one CL trajectory to reweight to range of parameter values (contrast to phase-quenched reweighting).

Summary

- For some theories with complex action the CL method works correctly for some range of parameters (μ, m, β), but fails for other parameter values.
- Propose new method: *reweighted complex Langevin* (RCL) method, which combines CL with reweighting of the complex trajectories.
- Proof of principle: applied RCL on RMT model and on 2dQCD using reweighting in m, μ and β at $\mu \neq 0$ and verified that the RCL procedure works correctly.
- Efficiency:
 - RCL in *m* works best,
 - RCL in µ works in limited window,
 - RCL in β hardly works as gauge probability is narrow and sensitive to β .
- Method could be optimized by making a multiparameter RCL in μ , m, β (Fodor et al., 2002).
- Usual overlap/sign problem \rightarrow efficiency should be investigated further.

Outlook

- Try out on full 4dQCD where CL breaks down in phase transition region.
- As mass RCL works best: choose high enough *m* to get valid CL trajectory for particular (μ, β) and reweight in *m*.
- Alternatively: follow a line in (m, μ) -plane keeping β fixed.
- Learn how to reweight most efficiently.
- Make validity map of 2dQCD in (m, μ, β) plane and devise best reweighting path to cover all parameter values.
- New possibility: extend reweighting to interpolate rather then extrapolate: use auxiliary ensembles at μ₀ above and below critical region → improve reliability of results.