Reweighting trajectories from the complex Langevin method

Jacques Bloch, Johannes Meisinger, Sebastian Schmalzbauer

University of Regensburg

Lattice 2016
25 – 29 July 2016
Southampton, UK
QCD at $\mu \neq 0$: $\text{det}(D) \in \mathbb{C} \rightarrow \text{sign problem}$.

Most solutions: computational cost grows $\propto \exp(V)$ \rightarrow restricted to $\mu/T < 1$.

Possible alternative: complex Langevin method.

Recent investigations in heavy-dense QCD (Sexty et al., 2013) and full QCD (Fodor et al., 2015): method breaks down in transition region.

Problems confirmed for low-dimensional strong-coupling QCD (Bloch et al., 2015): method converges to wrong values for small masses.

New idea: combine CL method and reweighting of complex trajectory \rightarrow reweighted complex Langevin (RCL) method.

Reach regions of parameter space that are not simulated correctly by the CL method.
Complex Langevin Method

- Assume partition function

\[Z = \int dx \, e^{-S(x)} \]

with real degrees of freedom \(x \) and complex action \(S(x) \).

- Langevin equation with complex action: real variables driven into complex plane. So, \(x \rightarrow z = x + iy \) satisfying the CL equation

\[\dot{z}(t) = -\frac{\partial S}{\partial z} + \eta(t) \]

- Stochastic Euler discretization:

\[z(t + 1) = z(t) + \epsilon K + \sqrt{\epsilon} \eta, \]

with drift \(K = -\frac{\partial S}{\partial z} \), step size \(\epsilon \) and independent Gaussian noise \(\eta \) (chosen real for better convergence) with mean 0 and variance 2.
Validity of CL method

- Do CL equations give correct expectation values?
- If action S and observable \mathcal{O} holomorphic in complexified variables (up to singularities):

$$\left\langle \mathcal{O} \right\rangle \equiv \frac{1}{Z} \int dx \, w(x) \mathcal{O}(x) = \int dx \, dy \, P(x + iy) \mathcal{O}(x + iy)$$

- $w(x) \equiv e^{-S(x)}$ with complex action $S(x)$ in the real variables x,
- $P(z)$ is real probability of complexified variables z along CL trajectories.

Validity conditions:
- $P(z)$ suppressed close to singularities of drift and observable;
- Sufficiently rapid decay of $P(z)$ in the imaginary direction;

- CL validity conditions satisfied for some parameter values but not for others → in latter case the CL method will fail.
- For QCD this depends on μ, m, β and lattice size.
Reweighted complex Langevin (RCL)

<table>
<thead>
<tr>
<th>Aim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extend applicability of CL method to parameter regions for which validity conditions are not satisfied.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Principle</th>
</tr>
</thead>
</table>
| - Generate **CL trajectory** for parameter values where CL is correct
- **Reweight** this complex trajectory to compute observables for other parameter values where CL could be wrong. |

<table>
<thead>
<tr>
<th>Advantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reweighting from $\mu \neq 0$: auxiliary ensemble closer to target ensemble than in traditional reweighting.</td>
</tr>
</tbody>
</table>
Reweighting the CL trajectories

- Consider target ensemble with parameters $\xi = (\mu, m, \beta)$ and auxiliary ensemble with parameters $\xi_0 = (\mu_0, m_0, \beta_0)$
- Reweight from auxiliary ensemble with parameters ξ_0 to target ensemble with parameters ξ:

$$
\langle O \rangle_\xi = \frac{\int dx \, w(x; \xi) O(x; \xi)}{\int dx \, w(x; \xi)} = \frac{\int dx \, w(x; \xi_0) \left[\frac{w(x; \xi)}{w(x; \xi_0)} O(x; \xi) \right]}{\int dx \, w(x; \xi_0) \left[\frac{w(x; \xi)}{w(x; \xi_0)} \right]}
$$

$$
= \frac{\left\langle \frac{w(x; \xi)}{w(x; \xi_0)} O(x; \xi) \right\rangle_{\xi_0}}{\left\langle \frac{w(x; \xi)}{w(x; \xi_0)} \right\rangle_{\xi_0}}
$$

- $w(x; \xi_0)$ is complex \rightarrow no importance sampling \rightarrow use CL
Reweighting the CL trajectories

- If CL method is valid for parameters ξ_0, the CL equivalence says

$$\langle \mathcal{O} \rangle_{\xi_0} \equiv \frac{\int dx \, w(x; \xi_0) \mathcal{O}(x; \xi_0)}{\int dx \, w(x; \xi_0)} = \int dx \, dy \, P(z; \xi_0) \mathcal{O}(z; \xi_0)$$

where:

- $w(x, \xi_0) \equiv e^{-S(x; \xi_0)}$ with complex action $S(x; \xi_0)$ in the real variables x.
- $P(z; \xi_0)$ is real probability of complexified variable z along CL trajectory.

- Apply the CL equivalence to both $\langle \cdots \rangle_{\xi_0}$ in reweighting formula:

\[
\langle \mathcal{O} \rangle_{\xi} = \frac{\int dx \, dy \, P(z; \xi_0) \left[\frac{w(z; \xi)}{w(z; \xi_0)} \mathcal{O}(z; \xi) \right]}{\int dx \, dy \, P(z; \xi_0) \left[\frac{w(z; \xi)}{w(z; \xi_0)} \right]}
\]

→ $\langle \mathcal{O} \rangle_{\xi}$ in target ensemble is ratio of expressions evaluated along CL trajectory in the auxiliary ensemble.

- Does this reweighting along the complex trajectory work correctly?
Features of RCL

- Both \(w(z_j; \xi) \) and \(w(z_j; \xi_0) \) are complex.
- RCL based on fact that the effective observables are correctly evaluated in auxiliary ensemble when using a valid CL trajectory.
- Application to finite discretized CL trajectory:

\[
\langle \mathcal{O} \rangle_\xi \approx \frac{1}{N} \sum_{j=1}^{N} \frac{w(z_j; \xi)}{w(z_j; \xi_0)} \mathcal{O}(z_j; \xi)
\]

where \(z_j \) are complex configurations of CL trajectory at \(\xi_0 \).
- Note: reweighting factor cancels observable singularities in target ensemble explicitly.

Applied to:

- Random matrix model for QCD (Osborn, 2004)
- QCD in 1+1 dimensions (Bloch et al., 2015)
QCD – partition function

- Partition function of lattice QCD:

\[
Z = \left[\prod_{x=1}^{V} \prod_{\nu=0}^{d-1} \int dU_{x,\nu} \right] \exp[-S_g] \det D(m; \mu)
\]

with SU(3) matrices \(U_{x,\nu} \).

- \(S_g \): Wilson gauge action
- \(D \): staggered Dirac operator for quark of mass \(m \) at chemical potential \(\mu \)
- For \(\mu \neq 0 \): \(\det(D) \in \mathbb{C} \rightarrow \) complex action and sign problem.
CL equations drive $U_{x,y}$ from $\text{SU}(3) \rightarrow \text{SL}(3, \mathbb{C})$.

CL method invalid when complex trajectories wander off too far in the imaginary direction of the complexified variables.

Gauge theories: problem resolved with gauge cooling (Seiler et al., 2012) → keep trajectories as close as possible to SU(3).

Gauge cooling alters CL trajectories: validity conditions of CL can be restored, BUT no guarantee to achieve this for all parameter values.

Validity of CL method in 1+1-dim strong-coupling QCD (Bloch et al., 2015):
- Gauge cooling → valid results for some parameter range (m, μ).
- At small masses: $P(z)$ not sufficiently suppressed for singularity of drift and observables at $\det(D) = 0$ → CL method gives wrong results.

Investigate RCL in these cases.
2dQCD: Reweighting in m for 4×4 lattice

- 4×4 lattice at $\beta = 0, \mu = 0.3$: mild sign problem
- CL with gauge cooling: wrong for small masses ($m \lesssim 0.2$)

Chiral condensate and number density versus mass at $\mu = 0.3$ for a 4×4 lattice:

- CL versus RCL.
2dQCD: Reweighting in m for 4×4 lattice

- 4×4 lattice at $\beta = 0, \mu = 0.3$: mild sign problem
- CL with gauge cooling: wrong for small masses ($m \lesssim 0.2$)
- Apply RCL method: auxiliary ensemble at $m = 0.4, \mu = 0.3$.
- RCL in mass works over complete mass range.

Chiral condensate and number density versus mass at $\mu = 0.3$ for a 4×4 lattice: CL versus RCL.
2dQCD: Reweighting in m for 6×6 lattice

- 6×6 lattice at $\beta = 0, \mu = 0.3$: stronger sign problem
- Again, CL with gauge cooling: wrong for small masses ($m \lesssim 0.2$)

Chiral condensate and number density versus mass at $\mu = 0.3$ for a 6×6 lattice: CL versus RCL.
2dQCD: Reweighting in m for 6×6 lattice

- 6×6 lattice at $\beta = 0, \mu = 0.3$: stronger sign problem
- Again, CL with gauge cooling: wrong for small masses ($m \lesssim 0.2$)
- Apply RCL method: auxiliary ensemble at $m = 0.4, \mu = 0.3$.
- RCL works down to $m \approx 0.05$.

Chiral condensate and number density versus mass at $\mu = 0.3$ for a 6×6 lattice:

CL versus RCL.
2dQCD – Reweighting in μ at $\beta = 0$

Σ versus μ at $m = 0.1$

n versus μ at $m = 0$

Jacques Bloch
Reweighting trajectories from the complex Langevin method
Leaving the strong-coupling limit: Σ versus β

- At $m = 0.3$: CL agrees with benchmark (phase-quenched reweighting)
- At $m = 0.1$: CL only agrees at large β (> 8)

Chiral condensate β at $\mu = 0.3$, $m = 0.3$ (left) and $m = 0.1$ (right) for a 4×4 lattice: CL versus RCL.
Leaving the strong-coupling limit: Σ versus β

At $m = 0.3$: CL agrees with benchmark (phase-quenched reweighting)
At $m = 0.1$: CL only agrees at large β (>8)

However, RCL only brings little improvement

Chiral condensate β at $\mu = 0.3$, $m = 0.3$ (left) and $m = 0.1$ (right) for a 4×4 lattice: CL versus RCL.
Remarks on RCL

- RCL has usual overlap/sign problem, but could be less severe than with phase-quenched or Glasgow reweighting, because auxiliary ensemble is closer to target ensemble.
 1. Glasgow reweighting: $\mu_0 = 0$. RCL from $\mu_0 \neq 0$: auxiliary closer to target.
 2. Phase-quenched reweighting: $w_0 = |\text{det}(D)|$. Auxiliary and target are in different phases for $\mu > m_\pi/2$: little overlap between relevant configurations. RCL from $\mu \neq 0$: auxiliary and target both taken in full QCD.

- RCL can use one CL trajectory to reweight to range of parameter values (contrast to phase-quenched reweighting).
Summary

- For some theories with complex action the CL method works correctly for some range of parameters \((\mu, m, \beta)\), but fails for other parameter values.
- Propose new method: reweighted complex Langevin (RCL) method, which combines CL with reweighting of the complex trajectories.
- **Proof of principle:** applied RCL on RMT model and on 2dQCD using reweighting in \(m, \mu\) and \(\beta\) at \(\mu \neq 0\) and verified that the RCL procedure works correctly.
- **Efficiency:**
 - RCL in \(m\) works best,
 - RCL in \(\mu\) works in limited window,
 - RCL in \(\beta\) hardly works as gauge probability is narrow and sensitive to \(\beta\).
- Method could be optimized by making a multiparameter RCL in \(\mu, m, \beta\) (Fodor et al., 2002).
- **Usual overlap/sign problem \(\rightarrow\)** efficiency should be investigated further.
Outlook

- Try out on full 4dQCD where CL breaks down in phase transition region.
- As mass RCL works best: choose high enough \(m \) to get valid CL trajectory for particular \((\mu, \beta)\) and reweight in \(m \).
- Alternatively: follow a line in \((m, \mu)\)-plane keeping \(\beta \) fixed.
- Learn how to reweight most efficiently.
- Make validity map of 2dQCD in \((m, \mu, \beta)\) plane and devise best reweighting path to cover all parameter values.
- New possibility: extend reweighting to interpolate rather then extrapolate: use auxiliary ensembles at \(\mu_0 \) above and below critical region → improve reliability of results.